

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 5 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 246

A Novel Indexing based Decision tree model on high

Dimension Data Stream

G.Geetha

M.tech Student in CSE Department,

Swarnandhra College of Engineering &

Technology,Narsapuram,Andhra Pradesh,India.

 Dr. M Nagabhushana Rao

 Professor in CSE Department,

Swarnandhra College of

Engineering & Technology,

Narsapuram, Andhra Pradesh, India.

Abstract:

As the dimension increases, the complexity to find

the nearest neighbor also increases. In one

dimension we can find the nearest point very

efficiently. But when the dimension increases, the

search efficiency depends on how many points we

have to search. In this thesis, we propose a simple

and efficient technique on how to organize the

points in the high dimensional space which also

allows searching the nearest point efficiently. We

have used a memory efficient database

organization of the points in the high dimension,

and the searching algorithm is based on limiting

the search within some particular indexes of the

database. A comparative analysis reveals that our

database organization is faster than Etree, R-tree ,

and the searching algorithm is also very efficient.

Keywords – Watermark, Security, Encode and

Decode.

I. INTRODUCTION

The nearest neighbor search is an important field of

research which has been widely used in multimedia

database, pattern recognition, computational

engineering etc. The nearest neighbor problem can

be formulated as: given a query point q, find the

point t that has the shortest distance from q. In

order to search the nearest point, we must store the

points in the database [2] and then search. So it

requires efficient database management to search

the nearest point. It is also required what kind of

information of the points (i.e. coordinate etc) we

have to store in the database. There are several high

dimensional database organizations such as SR-

tree [5], R-tree [23], K-d tree [25] etc. Besides

these, the authors [1] used an ellipsoid cluster to

store and search the nearest neighbor in the high

dimension and d (d = number of dimensions)

number of one-dimensional arrays [2] to perform

storage and searching. In our approach, we have

considered a very simple organization of the

database in the high dimensional space. We have

proposed only one database which will contain the

high dimensional values of the points and also their

distance from the origin. We have used an efficient

searching algorithm to find the nearest

neighbor or point by using the information of the

database in a particular region surrounding the

query point. Traditional methods consider a search

in a one-dimensional array. In the worst case, we

have to search all the values in the array to find the

smallest value stored in the array. So its complexity

will be О(n) in the worst case. If we search in this

way in higher dimensional space, it will be an

impractical solution. We need an efficient

algorithm to search for the nearest point for a query

point in the high dimensional space. In this thesis,

we have developed a technique that searches for

the nearest point in the high dimensional space in

an efficient way.

II. LITERATURE SURVEY

The authors have proposed another type of storage

for the points in the high dimension [2]. At first,

they have stored the points in d number (d =

number of dimensions) of one-dimensional arrays

where the jth array contains the jth coordinate of

the point in d dimensional space. Here the

searching algorithm sorts these one- dimensional

arrays at first. Then it creates four candidate lists

from these arrays which contain the query point.

After this, it exhaustively searches for the nearest

neighbor inside a cube around the query point.

Besides this database storage, there are some tree

based data structures which have been widely used

in high dimensional database indexing. These are

SR-tree [5], R-tree [23], K-d tree [35] etc. R-tree is

a tree data structure used to index multidimensional

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 5 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 247

information using the minimum bounding rectangle

(MBR) of the data [23]. The minimum bounding

rectangle means the maximum extension of a two-

dimensional object

 point, line, polygon) in its two coordinate

(x,y) system. The entries for each node in the R-

tree are variable. The entries for each node have

pointers to the child node and the MBR of all

entries with in this child node. The insertion and

deletion ensures that the nearby elements reside

inside the same leaf node by using the MBR from

the nodes. A new element will be inserted in a leaf

node which requires the least extension of its MBR.

In the same way, the searching algorithm will

prune away unnecessary nodes by examining the

MBR of the element [28]. The SR-tree is also

similar to R-tree where it uses the intersection of

the bounding sphere and the bounding rectangle of

the data set [5]. The K-d tree is a binary tree in

which each node is a K dimensional point and

associated with one of the k dimensions with the

hyper plane perpendicular to that dimension’s axis

[24]. Every non leaf node in K-d tree divides the

space into two sub trees where the left sub trees

have values less than the right sub trees for the

dimension with which that node is associated with.

In our approach, we have considered a very simple

approach of organizing the points in one single

database and searching through the database

efficiently to find the nearest neighbor.

In the database, the index of the points represents

the distance of the points from the origin. It is a

must to get the index position of the query point at

first. The index position of the query point can be

easily determined by comparing the distance of the

query point from the origin with that of the points

in the database. At this point, the index position of

the query point is known (Lets it is i). Now the

nearest point to the query point lies within certain

range from the index position of the query point to

the nearby points. From the index position of the

query point, the search algorithm can move upward

(i.e. index position i-1, i-2, … 0) and compare the

distance between each of the points and the query

point to find the nearest point in that direction. It

can also go downward (i.e. index position i+1, i+2,

… i+N) and compare the distance between each of

the points and the query point to find the nearest

point in the downward direction. Now it can

compare these two distances from the upward and

downward direction of the database and get the

nearest point for the database. The upward

direction means the points which are closer to the

origin and the downward direction means the

points which are farther away from the origin. In

each of this direction, there can be millions of

points to compare. We have proposed a technique

which will not compare the distance of each of the

points in the database except some points in a

certain range in the database. The authors [2]

represent a searching technique which searches the

nearest point around the query point in a certain

limited region in the high dimensional space. They

have used a probabilistic parameter є to calculate

the surrounding region of the query point. We have

proposed a deterministic approach which will not

compare the distance of each of the points in the

database except some points in a certain range in

the database.

In order to explain clearly, let’s consider a

two dimensional space. Suppose the query point

belongs to the index i of the database (q(x,y) in

fig 1). We can have two points from the

database at the index i-1 and i+1 (p1 and p2

respectively in fig 1). We can also calculate

the minimum Euclidean distance from these two

points to the query point at the position i and

let’s it is considered as d[1].

The two spheres around the circle (in

fig1) limit the search in this region. In the

downward direction of the database, the

algorithm will stop checking with the distance

of the points which has distance > r + d from

the origin as it is in figure 1. In the upward

direction, it will stop at the position of the

database where the distance is < r - d. This

ensures that the algorithm has checked all the

points inside the circle. In each of the

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 5 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 248

direction, the algorithm checks whether the

points reside inside the square and then the

circle. Then it compares the distance and gets

the minimum one. The IR2-tree is the first

access method for answering NN queries with

keywords. As with many pioneering solutions,

the IR2-tree also has a few drawbacks that affect

its efficiency. The most serious one of all is that

the number of false hits can be really large when

the object of the final result is far away from the

query point, or the result is simply empty. In

these cases, the query algorithm would need to

load the documents of many objects, incurring

expensive overhead as each loading necessitates

a random access.

III. PROPOSED WORK

One point is for the upward direction and another

one for the downward direction. Now inside these

points we will search and compare the distance

between the point and the query point if it exists in

the hypercube and then the hyper sphere. If the

distance is less than the existing distance, the final

distance will be updated.

Variables: N, O, P, and R are nodes in the

hierarchy.

 I is an unclassified instance.

 A is a nominal attribute.

 V is a value of an attribute.

Incorporate(N, I)

 update the probability of category N.

 For each attribute A in instance I,

 For each value V of A,

 Update the probability of V given category N.

Create-new-terminals(N, I)

 Create a new child M of node N.

 Initialize M’s probabilities to those for N.

 Create a new child O of node N.

 Initialize O’s probabilities using I’s value.

Merge(P, R, N)

 Make O a new child of N.

 Set O’s probabilities to be P and R’s average.

 Remove P and R as children of node N.

 Add P and R as children of node O.

 Return O.

Split(P, N)

 Remove the child P of node N

For each Fragmented Node Instances perform the

FCM technique as follows:

Improved Fuzzy C-means

For each point x we have a coefficient giving the

degree of being in the kth cluster uk(x). Usually, the

sum of those coefficients is defined to be 1, so

thatuk(x) denotes a probability of belonging to a

certain cluster:

With fuzzy c-means, the centroid of a cluster is the

mean of all points, weighted by their degree of

belonging to the cluster:

The degree of belonging is related to the inverse of

the distance to the cluster

then the coefficients are normalized and fuzzyfied

with a real parameter m > 1 so that their sum is 1.

 Uses a specific distance measure called the Ward

distance:

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 5 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 249

where nX indicates the number of instances in

cluster X (and likewise for Y).

In each iteration, clusters which have the shortest

distance are combined.

The purpose of feature weighting for clustering is

to assign proper weight values for all features

according to their importance to the clustering

quality.After feature weighting is applied ,

(,)m kdisw x c ,which means distance with feature

weighting and is formulated as:

1

1

(,) (,)

(,) | |

N

m k n mn kn

n

N

m k n mn kn

n

disw x c w d x c

disw x c w x c

Where nw is the weight of feature nf and

1 2{ , }nw w w w is the set of n feature

weights .

Our searching algorithm has the linear time

complexity because it can search and compare the

distance of the points in a single loop. If there is n1

number of points inside the hyper sphere, then the

complexity will be O(n1). The searching approach

sorts the points at first and then it searches for the

nearest point for a query point.

IV.Experimental Results

All experiments are performed with the

configurations Intel(R) Core(TM)2 CPU 2.13GHz,

2 GB RAM, and the operating system platform is

Microsoft Windows XP Professional (SP2).

IndexSize(kB) SearchTime(ms) ProcessingTime(ms)

100 3252 1334

200 3946 1594

300 3599 2088

400 4000 2116

500 4187 2199

Search time and process time comparison

Algorithm Accuracy ErrorRate

E-treeBased 0.84 0.24

Existing 0.917 0.096

Proposed 0.986 0.012

Proposed algorithms vs Existing models

Proposed algorithms vs Existing models

V. CONCLUSION

Within this paper we studied the best way to

efficiently find within the number of strings those

the same to a given string. We made two

contributions. First, we developed new algorithms

that could greatly improve performance existing

algorithms. Second, we studied how you can

integrate existing filtering techniques with one of

these algorithms, and showed that they ought to be

used together judiciously, ever since the avenue for

doing the combination can greatly affect the

performance. We have used a memory efficient

database organization of the points in the high

dimension, and the searching algorithm is based on

limiting the search within some particular indexes

of the database. A comparative analysis reveals that

our database organization is faster than K-d tree, R-

tree , and the searching algorithm is also very

efficient.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 30 Number 5 - December 2015

ISSN: 2231-5381 http://www.ijettjournal.org Page 250

7.REFERENCES

[1] A. Arasu, V. Ganti, and R. Kaushik, “Efficient Exact Set-
Similarity Joins,” in VLDB, 2006, pp. 918–929.

[2] R. Bayardo, Y. Ma, and R. Srikant, “Scaling up all-pairs

similarity search,” in WWW Conference, 2007.
[3] D. Deng, Y. Jiang, G. Li, J. Li, and C. Yu. Scalable column

concept determination for web tables using large knowledge

bases. PVLDB, 6(13):1606–1617, 2013.
[4] J. Feng, J. Wang, and G. Li. Trie-join: a trie-based method

for efficient string similarity joins. VLDB J., 21(4):437–461,

2012.
[5] E. H. Jacox and H. Samet. Metric space similarity joins.

ACM Trans. Database Syst., 33(2), 2008.

[6] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani,
“Robust and Efficient Fuzzy Match for Online Data Cleaning,”

in SIGMOD, 2003, pp. 313–324.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[8] Y. Kim and K. Shim. Parallel top-k similarity join

algorithms using mapreduce. In ICDE, pages 510–521, 2012.
[9] F. Li, B. C. Ooi, M. T. ¨Ozsu, and S. Wu. Distributed data

management using mapreduce. ACM Comput. Surv., 2014.

[10] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S.
Muthukrishnan, and D. Srivastava, “Approximate string joins in

a database (almost) for free,” in VLDB, 2001, pp. 491–500.

http://www.ijettjournal.org/

