
 International Journal of Engineering Trends and Technology (IJETT) – Volume 35 Number 6- May 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 250

Early Phase Software Effort Estimation Model:

A Review

Priya Agrawal, Shraddha Kumar
CSE Department, Sushila Devi Bansal College of Technology, Indore(M.P.), India

Abstract— Software effort estimation is the

measurement of work and resource required to

develop a software system for a particular period.

Cost can be determined using effort as cost is directly

proportional to effort. Software cost estimation is one

of the most difficult jobs in project planning especially

in its early phase. In earlier proposed cost estimation

models, cost estimation is done with more than 20

parameters at the early conceptual phase and if input

is not defined using logical approach, the results of

estimation are unpredictable. Using too many cost

drivers or parameters make cost estimation process

lengthy and complex. In our proposed study, we will

highlight on the pros and cons of different cost

estimation methods. Then we will look forward to

work on making a simple system with minimum set of

parameters that can be easily identified at an early

stage while considering all possible aspects such as

accuracy, simplicity etc.

Keywords— Project Estimation, Effort Estimation, Cost

Models, KSLOC, SDLC, Early Phase Cost Estimation

I. INTRODUCTION

Cost estimation is the expert measurement of effort

and development time required to develop a software

system. The software cost estimation process includes

determining the size of the software product to be

produced, determining the effort required, developing

initial schedules of projects, and finally, calculating

the overall cost of the project. Software cost

estimation requires the determination of the following

estimates:

 Effort (usually in person-months)

 Project Duration (in calendar time)

 Number of persons required

After the large acceptance and success of

COCOMO II model [4] of Boehm since 2000, there

has not been much work done in this field for further

improvement. An estimation model with 20-30 input

parameters for cost drivers is not very helpful if we do

not have a logical approach for specifying the input

values for parameters like the software’s complexity,

database size, platform volatility, schedule

compression, or personnel experience. After many

years of COCOMO II an innovative approach came

was of Wilson Rosa et al ―Simple Empirical Software

Effort Estimation Model‖ , 2014 [17] . His model

overcomes the problem of having too many input

parameters as in COCOMO II.

In this research investigation, we will understand

the issues and challenges related to software

development effort estimation. Cost estimation must

be accurate because it is very helpful in determining

what resources to commit to the project and how well

these resources are used. Customers expect that actual

project development cost to be in line with estimated

costs, this gives better customer satisfaction.

II. LITERATURE SURVEY

Software Cost Estimation (SCE) is a process of

forecasting of efforts and cost in terms of cost,

schedule and personnel for any software system.

Software cost estimation is a method which is as old

as the computer industry itself and it has been

developed many times until function points were

formulated by Albrecht in 1979. Nowadays software

cost estimation is becoming a complex branch of

computer science, therefore many sizing techniques,

sizing metrics, cost and effort models appeared. The

author Abedallah Zaid et.al, [12] shows the common

techniques used in SCE and along with it, it highlights

the very important trends in this field also. He

described the most urgent topics to investigate and the

challenges in SCE.
Software project planning is one of the most

important tasks in software project development. Poor

planning of software development often leads to many

problems in the long term of project use. Project errors

& unwanted and unrealistic outputs are some common

problems often occur in front of the project team.

Nowadays software project managers should be aware

of the increasing cases of project failures. The reason

behind it is imprecision of the cost estimation. The

author Vahid Khatibi et.al, [13] shows several existing

methods for software cost estimation and

demonstrated their aspects. Comparing the

characteristics of the methods they can be applied for

ability based clustering; it is also helpful in selecting

the special method specific for each project. The

author also gives a complete case study of estimation

in an actual software project.

Software cost estimation is a critical factor in

project management. If we fail to use right software

cost estimation method, it might become a reason for

the project failures. According to Report found by

author Ali Bou Nassif et.al. [14], approximate 65% of

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 35 Number 6- May 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 251

projects are delivered to client over budget or post-

delivery deadline. Performing SCE in the early phases

of the SDLC is crucial and this would be helpful to

project development managers to bid on projects. The

authors proposed a novel method to determine a

software effort estimation using a cascade correlation

neural network approach on Use Case Diagrams. They

evaluated results based on the criteria of the MMER

(Mean Magnitude of Error Relative to the estimate)

and PRED (Prediction Level). They use 214 industrial

projects and 26 educational projects to test the results

on Use Case Point model and multiple linear

regression models. The author concludes that the

proposed model can be positively used with

acceptable results as an alternative approach to

calculate software effort as an early design phase of

software development.

Most of the estimation models require details of

different cost drivers that will be available at the later

stage of the development process. The author

Tharwon Arnuphaptrairong [15] proposes to use

Function Point Analysis in application with a dataflow

diagram to solve the timing critical problem. The

proposed methodology by the author was validated

through the graduate students’ software. Although the

results got by author were disappointing, but some

interesting insights are worth looking at the model.

The author Wilson Rosa et.al. [17] explained that

an SCE method with so many parameters that cannot

be defined logically for input is not useful at an early

conceptual stage. Author gives a simple approach for

forecasting software development effort at an early

stage of project development. The regression model is

used along with product size and application types to

calculate effort in this approach. Product size is

calculated in terms of the equivalent source lines of

code. The author gathered and then analyzed empirical

data from 317 very recent projects implemented

within the US Department of Defense over the tenure

of 9 years started in 2004. The equation is easier and

more relevant to use for early cost estimation than

traditional parametric cost models. The Statistical

results explained that source lines of code and

application type, both are important contributors to the

development effort.

III. ESTIMATION TECHNIQUES

Usually software cost estimation methods are divided

into two classes: Algorithmic and Non Algorithmic.

Both the classes are required for performing accurate

estimation. In this section, some popular estimation

techniques are discussed.

A. Algorithmic Models

This software cost estimation technique uses

mathematical equations to perform the software

estimation. The mathematical equations are based on

previous data. SLOC (source line of code), function

points, and other cost drivers are the inputs. For most

algorithmic models, calibration to the specific

software environment can be performed to improve

the estimation.

1) Function Point Analysis: It starts with the breaking

up of a project or application into its transactional

functions and data. The data functions display the

functionality provided to the user by fulfilling their

internal and external needs in correlation to the data,

whereas the transactional functions describe the

functionality provided to the user in relation to the

processing this data by the application. Each function

is divided in accordance to its functional complexity

as low, average or high. The data functions relative

functional complexity depends on the type of of data

element and the number of record element types

(RETs). The transactional functions are classified

according to the number of file types referenced

(FTRs) and the number of DETs. The number of sum

of the number of ILFs and the number of EIFs updated

or queried during an elementary process.

The data functions are:

 i.Internal Logical File (ILF)

 ii.External Interface File (EIF)

The transactional functions are:

 i.External Input (EI)

 ii.External Output (EO)

 iii.External Inquiry (EI)

The actual calculation process consists of three steps:

i.Determination of unadjusted function points (UFP).

ii.Calculation of value of adjustment factor (VAF).

iii.Calculation of final adjusted functional points.

Calculation of Unadjusted FP: The unadjusted

Functional points are evaluated in the following

manner:

 UFP=ΣΣFxy*Zxy, for y= 1 to 3 and x = 1 to 5,

Where, Zxy denotes count for component x at level

(low, average or high) y, and Fxy is corresponding

Function Points.

Evaluation of Value Adjusted FP: Value Adjustment

Factor (VAF) is evaluated from the addition of the

degree of influence (DI) of the 14 general system

characteristics (GSCc). General System characteristics

are:

i. Data communications

ii. Distributed data processing

iii. Performance

iv. Heavily utilized configuration

v. Transaction rate

vi. On-line data entry

vii. End-user efficiency

viii. On-line update

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 35 Number 6- May 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 252

ix. Complex processing

x. Reusability

xi. Installations ease

xii. Operational ease

xiii. Multiple sites/organizations

xiv. Facilitate change

Function points can be changed into Effort in Person

Hours. Numbers of studies have attempted to relate

LOC and FP metrics. Historical data for numerous

programming languages derives the average number

of source code statements per function point.

Languages are classified into different levels

according to the relationship between Lines Of Code

and Function Point.

2) KSLOC: Source a line of code (SLOC) is software

metric used to measure the size of a software program

by counting the lines in the the program's source code.

SLOC is typically used to predict the amount of effort

that is needed to create a program, and also to estimate

programming productivity or maintainability once the

software is produced. SLOC is an estimation

parameter that illustrates the number of all commands

and data definition but comments and blanks are not

considered in it. After completing the project, all

estimations are verified with the actual ones.

Thousand Lines of Code are used for estimation very

commonly. SLOC calculation is very difficult at the

early phase of the project because of the lack of

information about requirements.

Since SLOC is measured based on language

instructions, comparing the size of software which

uses varied languages is too hard. However, SLOC is

the foundation of the estimation models in many

complicated software estimation methods. SLOC is

measured by considering SL as the lowest, SH as the

highest and SM as the most probable size.

S = (SL+ 4SM+ SH) / 6

3)COCOMO-II: The Early phase cost estimation

model COCOMO-II uses thousand source lines of

code (KSLOC) or unadjusted function points (UFP)

for the estimation of size. UFPs can be changed to the

equivalent SLOC and then to KSLOC to estimate the

size of the software. The use of exponential scale

factors is similar for Post-Architecture and the Early

Design models. A reduced set of multiple cost drivers

is used in the Early Phase Design model as shown in

Table I. The Early Design phase cost drivers are

established by integrating the Post-Architecture model

cost drivers. The value of the cost drivers is calculated

and whenever it lies in the midway of the rating

provided, roundup this to the nominal rating. Example:

If the rating of estimated cost drivers value lies

between Very High and High then select High. The

effort equation is same except that the number of

effort multipliers is reduced to seven (n = 7).

TABLE I
EARLY DESIGN AND POST-ARCHITECTURE EFFORT MULTIPLIERS [8]

Early Design Cost

Driver

Counterpart Combined Post-

Architecture Cost Drivers

PERS ACAP, PCAP, PCON

RCPX RELY, DATA, CPLX, DOCU

RUSE RUSE

PDIF TIME, STOR, PVOL

PREX APEX, PLEX, LTEX

FCIL TOOL, SITE

SCED SCED

The reduced Early Design model cost driver maps all

the Post-Architecture cost drivers as shown in

TABLE I. The details of the cost drivers are as

follows:

 Personnel Capability (PERS) includes Analyst

Capability (ACAP), Programmer’s Capability

(PCAP), and Personnel Continuity (PCON).

 Product Reliability and Complexity (RCPX)

includes Required Software Reliability (RELY),

Database size (DATA), Product Complexity

(CPLX), and Documentation match to life-cycle

needs (DOCU).

 Required Reuse (RUSE) is same in both the

phase of software development.

 Platform Difficulty (PDIF) includes Execution

Time (TIME), Main Storage Constraint (STOR),

and Platform Volatility (PVOL).

 Personnel Experience (PREX) includes

Application Experience (AEXP), Platform

Experience (PEXP), and Language and Tool

Experience (LTEX).

 Facilities (FCIL) include use of Software Tools

(TOOL) and Multisite Development (SITE).

 Schedule (SCED) is same in both the phase of

software development.

The reduced cost drivers include the combination

and use of numerical equivalent rating level values of

complete cost drivers. Numerical values of Post-

Architecture cost driver rating is 1 for Very Low, 2 for

Low, 3 for Nominal, 4 for High, 5 for Very High and

6 for Extra High. The Early Design model cost drivers

rating scale is from Extra Low to Extra High and the

values of each cost driver is computed by the

summation of values of combined Post-Architecture

cost drivers value . If the contributing Post-

Architecture cost driver has Nominal scale than the

corresponding Early Design model rating is also

Nominal. Effort will be calculated after analysis of

each cost drivers value with the following given

equation:

PMEstimated = 3.67 x (Size)
 (SF)

i x [∏EMi]

Where PM gives effort in persons-month, size in terms

of KSLOC of the software, SF is the scaling factor

and EM is the effort multipliers.

Mainstream parametric cost models use source lines

of code (SLOC) as a measurement for predicting

software effort. The main reason of using SLOC is

that it allows practitioners to determine or at least

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 35 Number 6- May 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 253

estimate what parts of the system they will actually be

developing. In contrast, function-point or use-case

based size estimates are made without determining

which functions are going to be provided by

Commercial-Off-The-Shelf products, cloud services,

or other non-developed items, causing serious

overestimates. However controversy exists over

whether or not SLOC is a good indicator, continuous

use of this metric generates meaningful statistical

results.

4) Empirical Software Effort Estimation: An effort

estimation model with more than 15 cost drivers is not

very good at early conceptual phase if you do not have

a logical approach for specifying the input values.

This model presents a simple approach for predicting

software development effort. The model uses

software size and application types to estimate effort.

Software size is evaluated in terms of the equivalent

source lines of code. This study is based on empirical

data assembled from 317 very recent projects

developed within the United States Department of

Defense over the period of nine years starting from

2004. Statistical results present that source lines of

code and application type are important part of

development effort. In comparison to traditional cost

models, the equation is easier and more feasible to use

for early estimates. Application type is defined in

terms of different type of applications that can be

developed shown in Table II.

PM = (2.047 x KESLOC0.9288) x (2.209
D1

) x

(1.917
D2

) x (3.068
D3

) x (3.072
D4

) x (3.434
D5

) x

(4.521
D6

) x (4.801
D7

) x (4.935
D8

) x (5.903
D9

) x

(7.434
D10

) x (10.72
D11

)

Where:

PM = Engineering Effort for application type in

Person Months

KESLOC = Product size in thousand Equivalent

Source Lines of Code

D1 to D11 defines the application type. The

values of each from D1 to D11 are 0 or 1

depending on the type of application to be

developed. Table 2.2 shows the application type

for all D1 to D11.

TABLE II

APPLICATION TYPE TAXONOMY [17]

Application Type Symbol SEER-SEM Application

Domain(s)

Test TST

(D6)

Diagnostics, Testing

Software

Software Tools TUL
(D1)

Business Analysis Tool,
CAD, Software

Development Tools

Intelligence &
Information Systems

IIS (D2) Database, Data Mining,
Data Warehousing,

Financial Transactions,

GUI, MIS, Multimedia,
Relational/Object-Oriented

Database, Transaction

Processing, Internet Server
Applet, Report Generation,

Office Automation

Mission Planning PLN

(D1)

Mission Planning &

Analysis

Mission Processing MP

(D8)

Command/Control

Real Time

Embedded

RTE

(D7)

Embedded

Electronics/Appliance, GUI
(cockpit displays), Robotics

Scientific Systems SCI

(D3)

Expert System, Math &

Complex Algorithms,
Simulation, Graphics

Sensor Control and

Signal Processing

SCP

(D11)

Radar, Signal Processing

System Software SYS
(D4)

Device Driver, System &
Device Utilities, Operating

System

Telecommunications TEL

(D5)

Communications, Message

Switching

Vehicle Control VC

(D9)

Flight Systems (Controls),

Executive

Vehicle Payload VP

(D10)

Flight Systems (Payload)

B. Non Algorithmic Methods

In opposition to the Algorithmic methods, non

algorithmic methods are based on analytical

comparisons. In this method historical data is used

which comes from similar project type and generally

estimation is done according to the study of previous

data. Here, three methods have been discussed which

are popular.

1) Analogy: Some similar completed software projects

are selected from previous database and then cost &

effort estimation of under estimate project is done

according to actual cost and effort of that projects.

Estimation through analogy is proficient at the total

structure levels and substructure levels. By judging the

results of previous actual projects, we can estimate the

cost and effort of a similar project. Following are the

steps of this method:

 i) Selection of analogy

 ii) Examining similarities and differences .

iii) Investigating of quality of analogy

iv) Doing estimation
 A similarity function is being used in this method that

compares features of two projects. There are two

common similarity function used namely Euclidean

similarity (ES) and Manhattan similarity (MS)

2) Expert judgment: In this method Estimation is

performed by taking advices from experts who have

good experiences in similar projects. This method is

generally helpful when there is lack of data and

gathered requirements. The main issue with this

method is that estimation is as good as expert

experience. Delphi technique is one of the most

common method that works according to expert

judgment. In Delphi technique a meeting of project

managers is called. They are then allowed to debate.

The real data about the application is then mined from

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 35 Number 6- May 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 254

these debates or discussions. Delphi includes some

steps:

i. The convener gives an estimation form to each

expert.

ii. Each expert presents his own estimation (without

discussing with others)

iii. The convener gathers all forms and sums up them

(including mean or median) on a form and ask experts

to start another iteration.

iv. steps (ii-iii) are repeated until an approval is

gained.

3) Machine learning Models: Most methods about

software cost estimation use statistical techniques,

which are not able to present logic and strong results.

Machine learning approaches could be suitable in this

area because they can increase the accuracy of

estimation by training rules of estimation and

repeating the run cycles. Machine learning methods

can be divided into two main methods, which are

explained below.

i) Neural Networks: This consists of many layers and

each layer is made of several elements known as

neurons. Neurons examine the weights defined for

inputs and based on that produce the outputs. Output

is the actual effort, which is the main aim of

estimation. Back propagation neural network is the

best choice for software estimation problem as it

balance the weights by comparing the network outputs

and actual results as well as training is done

succesfully.

ii) Fuzzy Method: A Fuzzy systems tries to simulate

human behavior and reasoning. There are many times

that we find conditions are not clear and decision

making is tough, in such scenario fuzzy systems are

very effective. Fuzzy logic often focuses the data that

gets ignored. Following are four steps in the fuzzy

method:

Step 1: Fuzzification: to evaluate trapezoidal no. for

the linguistic terms.

Step 2: to create the complexity matrix by determining

a new linguistic term.

Stage 3: to find the productivity rate and try for the

new linguistic terms.

Stage 4: Defuzzification: to find the effort needed to

finish a task and to compare the subsisting method.

In the first step fuzzification has been done by scale

factors, cost drivers and size . In step 2, principals of

Cocomo are considered and defuzzification is

accomplished to gain the effort.

IV COMPARISON OF THE ESTIMATION

METHODS

At this section according to the previous presented

subjects, it is possible to compare mentioned

estimation methods based on advantages and

disadvanta ges of them.This comparison could be

useful for choosing an appropriate method in a

particular project. On the other hand, selecting the

estimation technique is done based on capabilities of

methods and state of the project. Table IV shows a

comparison of mentioned methods for estimation. For

doing comparison, the popular existing estimation

methods have been selected.

TABLE IV

COMPARISON OF CURRENT METHODS

Method Type Strengths Weaknesses

COCOMO

Model

Algorithmic Universal

Approach;

More

predictable

and

accurate

Much

historical

data is

required;

V

Function

Point

Algorithmic Language

independent

Quite time

consuming;

Complex to

use

Expert

Judgement

Non-

Algorithmic

Useful in

absence of

Quantified

and

empirical

data

Estimate is

only as

good as

Expert’s

opinion;

Hard to do

document

the factors

used by

experts

Analogy Non-

Algorithmic

Based on

actual

project data

Impossible

if no

comparable

project has

been created

in the past

Neural

Networks

Non-

Algorithmic

Consistent

with unlike

databases;

Power of

reasoning

Performance

depends on

large

training data

Simple

Empirical

Algorithmic Equation is

simpler;

Very less

input

parameters

are used

Not highly

precise

Fuzzy Non-

Algorithmic

Flexibility;

Training is

not required

Very

complex to

use

KSLOC Algorithmic Ubiquitous

Technique;

Automation

is possible

Language

dependent

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 35 Number 6- May 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 255

V CHALLENGES OF SOFTWARE COST

ESTIMATION.

The estimation of effort can be done through

COCOMO-II, but it uses many cost drivers for effort

estimation and at early design phase it is difficult to

define them logically. Another model, i.e., Simple

Empirical Software Effort Estimation Model uses only

application type for the estimation of effort hence it

lacks with other important cost drivers that are

necessary to consider for the calculation of effort.

There is no such method exist that can improve the

system's efficiency and accuracy and keep it updated

with the current scenario. Hence a system is needed

with a feature of learning capability.

Generalize Issues in Cost Estimation

 Defensible estimates are needed at the early

conceptual phase of a software-intensive

system’s definition and development.

 Any cost stimation technique with 20-30

parameters is not very good if you do not have a

defensible approach for specifying the inputs.

 As with the changing technology and increasing

variety of application development, such a

system is needed that can cope up with the

changing environment and also improves itself

with time through learning.

A model is required for the estimation of effort that

will take minimum cost drivers and able to predict

more accurate estimation and also the minimum cost

drivers used by the proposed model should be

logically defined at early design phase of software

development. Software cost estimation process face

many difficulties to get a proper and accurate estimate

for many reasons, since software is a non physical

thing and with such non physical thing estimation is

not very easy in nature. One of the main difficulties

faced with estimation process is the data availability,

which is required for validating the correctness of any

project models, metrics & sizing technique. The

availability of data from real projects is scarce to

verify validity of new models, estimation and sizing

techniques methods. Many of the models and sizing

techniques proposed are based on a very small amount

of data; few methods for example have used more than

30 UML files to establish their effectiveness. The

metrics, models and functional sizing techniques

hence produced have low reliability and little evidence

of accuracy to their credit. Another challenge in

software cost estimation is that data may be very

sensitive. A technique providing accurate results for a

company in a country say A may produce far off

estimation for a different company in another country

B, this issue highlighted by Wieczorek and Ruhe [18].

Another major issue with software cost estimation is

that once a model has been fine tuned for accuracy it

requires data in early phase of software development

which is hard to come by. One solution to this

problem is to study large no of projects and produce a

generalized benchmarking dataset as done by ISBSG.

This dataset was created using many existing

completed software projects.

Coming towards other difficulties in the cost

estimation is the fast changing software industry. The

entire software development environment is volatile,

in terms of new tools , technologies used, better

hardware speed, new programming languages are

rapidly changing. There is need of a Estimation

techniques which are adaptable to newer situations.

This is important for SCE techniques to be consistent

with these changing factors of industry.

Furthermore, in addition to the problem of data

requirement, also the interdependency between the

cost parameters and how each one of them affects the

final output is very complex task.

Another challenge is lack of standard procedures and

restrictions in software development and cost

estimation in particular.

IV. CONCLUSIONS

Nowadays we are observing many projects going over

budget and failing. This is due to faulty cost

estimation. In this study, we have described how any

single cost estimation model is not suitable for all

projects. Each model has its own principles with are

logically very different from others. It has become a

difficult task for project managers to select one model

type. In this review study, we have found that there is

a need for one single software cost estimation

technique that is simple enough, uses less input

parameters and gives above average accuracy for all

kinds of projects. Future works in this field may

comprise of a hybrid model combining strengths of all

different types of models (Algorithmic and Non-

Algorithmic)

REFERENCES
[1] Boehm, Barry W., ―A Technical Book on Software

Engineering Economics.‖ in Prentice Hall, 1981.

[2] Boehm B., ―Software Engineering Economics‖ in Englewood

Cliffs, NJ, Prentice-‐Hall, 1981
[3] Boehm B., Abts C., Brown W., Chulani S., Clark B.,

Horowitz E., Madachy R., Reifer D., Steece B., ―Software

Cost Estimation with COCOMO II‖, in Prentice-‐Hall, 2000
[4] Boehm, B., ―Safe and simple software cost analysis,‖ in

Software, IEEE, 17(5), pp. 14–17, 2000.

[5] Clark, B., Devnani-Chulani, S., and Boehm, B., ―Calibrating
the COCOMO II Post-Architecture model,‖ in Proc. Int’l

Conf. Software Eng. (ICSE ’98), pp. 477–480, 1998.

[6] Boehm, B., 2001 COCOMO Website:
http://sunset.usc.edu/research/COCOMOII/cocomo_main.ht

ml

[7] Boehm, B., 2001 COCOMO Website:

http://sunset.usc.edu/research/COCOMOII/cocomo81_pgm/h

elp.html

[8] Boehm, B., ―COCOMO II Model Definition Manual‖ in
University of Southern California, 1999.

[9] Hareton Leung and Zhang Fan, ―Software Cost Estimation‖,

in The Hong Kong Polytechnic University, 1999
[10] Dr. N. Balaji, N. Shivakumar & V. Vignaraj Ananth,

―Software Cost Estimation using Function Point with Non-

Algorithmic Approach‖, in Global Journal of Computer
Science and Technology Software & Data Engineering, Vol.

13 Issue 8, 2013.

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 35 Number 6- May 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 256

[11] Ian Sommerville, ―Software Cost Estimation‖, in Software

Engineering Book, 6th edition, 2000

[12] Abedallah Zaid, Mohd Hasan Selamat, Abdual Azim Abd

Ghani, Rodziah Atan and Tieng Wei Koh, ―Issues in

Software Cost Estimation‖, in International Journal of
Computer Science and Network Security, 350 VOL.8 No.11,

2008.

[13] Vahid Khatibi, Dayang N. A. Jawawi, ―Software Cost
Estimation Methods: A Review‖, in Journal of Emerging

Trends in Computing and Information Sciences, Vol 2, 2011.

[14] Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho,
―Software Effort Estimation in the Early Stages of the

Software Life Cycle Using a Cascade Correlation Neural

Network Model‖, in International Conference on Software
Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, 2012

[15] Tharwon Arnuphaptrairong, ―Early Stage Software Effort

Estimation Using Function Point Analysis: Empirical

Evidence‖, in IMECS Vol-2, 2013

[16] Brad Clark, Wilson Rosa, Barry Boehm and Ray Madachy,

―Simple Empirical Software Effort Estimation Models‖, in
29th International Forum on COCOMO and

Systems/Software Cost Modeling, 2014

[17] Wilson Rosa, Ray Madachy, Barry Boehm and Brad Clark,
―Simple Empirical Software Effort Estimation Model‖, in

ESEM’14, ACM, 2014.

[18] I Wieczorek, M Ruhe,‖ How valuable is company specific
data

 Compared to multi-company data

forsoftwareestimation?―METRICS.02 , IEEE, pp 237- 246,
2002

http://www.ijettjournal.org/

