
 International Journal of Engineering Trends and Technology (IJETT) – Volume 37 Number 2- July 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 90

A Novel PCA based Multi-layer perceptron

algorithm for Maintainability Prediction
Deeksha Datyal

1
, Aman Kaushik

2
, Abhishek Tomar

3

1
Research Scholar,

 2
Assistant Professor,

 3
Assistant Professor

Department of Computer Science, Baddi University of Emerging Sciences and Technology

Baddi, Solan (H.P), India

Abstract: Software Engineering has attracted the

interest of the researchers all around the world in

the recent years. Various software metrics becomes

the index for measuring the quality of any software

engineering. Software maintainability is one of the

important metrics which needs to predict in

advanced for better performance during the SDLC

cycle. Various algorithms have been attempted in the

past for the same and their performance has been

measured. A classification algorithm such as KNN

has been the one of the primary algorithms. This

paper implements a novel PCA based Multi-layer

perceptron algorithm for maintainability prediction.

The maintainability is predicted and compared to

that of the actual values and accuracy, precision and

recall values are calculated. It is found that our

algorithm performs quite well and gives

encouraging results

.

Keywords:Software Maintainability, Principal

Component Analysis (PCA), Multi-Layer Perceptron

(MLP), Software Development Life Cycle Model

(SDLC).

I. INTRODUCTION

Software maintainability is the ease with which a

software system can be modified, is a significant

software quality attribute. Intrinsically associated

with this quality attribute is the maintenance process

that is being acknowledged to signify the majority of

the costs of a Software Development Life-Cycle

(SDLC). Therefore, the maintainability of a software

system can considerably impact software costs. The

changes in the software is necessary to convene the

changing requirements of customers which may

arise due to many reasons like change in the

technology, introduction of new hardware or

enhancement of the features provided etc. Producing

software which does not need to be changed is not

only impractical but also very uneconomical. This

method of varying the maintenance of software is

known as maintenance. The amount of resource,

effort and time spent on software maintenance is

much more than what is being spent on its

development. Thus, developing the software which

is simple to sustain and can save big costs and

efforts. The main approaches in controlling

maintenance cost are to monitor software metrics

during the development phase.

Prediction, basically called as estimation, is a

significant part of project planning. Estimates can be

made for projects or

processes as well as products. When these are made

for projects, these are called effort estimates and the

process is called effort estimation or software cost

estimation. When prediction is ready to a

maintenance process, the means of getting such

predictions is called maintenance cost prediction or

maintenance project effort estimation. In addition,

estimates of quality attributes provides a measurable

value of the quality of the attribute that a software

product possesses. The main centre of this paper is

on the estimation of the quality attribute of

maintainability. Software maintenance is defined as

“the process of modifying a software system or

component after delivery to correct faults, improve

performance or other attributes, or adapt to a

changed environment”. From the definitions it is

clear that maintenance is the process performed as

part of the SDLC whereas maintainability is the

quality attribute associated with the software

product. A software maintainability prediction

model can give a means to better manage their

maintenance resources and also to adopting a

defensive design. This can then help in reducing the

maintenance effort and therefore, reducing the

overall cost and time spent on a software project.

A. Uses of accurate prediction of software

maintainability

 It helps project managers in comparing the

productivity and costs among different

projects.

 It provides managers with information for

more effectively planning the use of

valuable resources.

 It helps managers in taking important

decision regarding staff allocation.

 It guides about maintenance process

efficiency.

 It helps in keeping future maintenance

effort under control.

II. RELATED WORK

YashTashtousget al. [1] analyzed the 5 public

domain software defect datasets provided by NASA

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 37 Number 2- July 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 91

IV & V Facility and Metrics Program (MSP)

repository to find correlation between different

software complexity metrics. It was found that

Cyclomatic Complexity has strong correlation with

Halstead Complexity and LOC. Halstead

Complexity was found to have strong correlation

with Cyclomatic Complexity but weak correlation

with LOC. Cyclomatic Complexity and Halstaed

Complexity are strongly correlated and used

together, Cyclomatic Complexity for measuring

control flow and Halstead Complexity for measuring

data flow.

Hairuddin and Elizabeth [2] proposed a

maintainability model in this paper. Moreover

several parameters such as Readability,

Standardization, Programming

Language,Modularity,Level of Validation and

Testing has been studied in order to calculate the

maintainability of software systems,Complexity and

Traceability can be taken in account.

Fioravanti and Nesi[3] presented a model for effort

estimation/prediction of adaptive maintenance. It

assumed that the system efforts are generally spent

on doing various operations such as insertion,

addition, subtraction, deletion of fact, changes of

system code etc. This metric is useful for various

software projects and validated for predicting

adaptive maintenance. The results show that the

proposed model is performsbetter as compared with

other traditional model.

Bandiniet al.[4] this paper measured the 3

independent factors, namely; design complexity,

maintenance task and programmer’s ability to

predict the maintenance performance for object-

oriented systems. To measure design complexity,

Perfective and corrective maintenance has been

chosen to signify maintenance task. Correlation

analysis was carried out to summarize that the

selected attributes is capable to estimate the

maintenance efforts of the systems.

Ahnet al. [5] presented a model of measuring

software maintenance project effort estimation and

this proposed approach is depending on the function

point measure and 10 maintenance productivity

factors. These factors are categorized as engineer’s

skills, technology characteristics, and maintenance

environment.

The estimation was prepared by Ardimento et al.

[6] that if a component is difficult to understand then

it will be difficult to maintain it and advised the trial

usage of component before adopting it for the

application.

Riazet al. [7] in this paper, the effect of systematic

survey on maintainability predictions and metrics

has been proposed. Out of 710 reviews 15 were

selected for systematic review. Typically, model has

been designed for the prediction of maintainability

was depends on algorithmic techniques but that

algorithm is to be applied to which maintenance

type, this type of distinction is not available. The

researchers proposed several model for designing

which are more efficient, robust and reliable.

Thwin and Quah[8] used neural networks to build

software quality prediction models. They proposed

that maintainability can be estimated with the help of

fuzzy model. They also proved empirically that the

integrated measure of maintenance obtained from

this fuzzy model has strong correlation with

maintenance.

Zhou and Leung[9]multivariate adaptive regression

splines (MARS) has been utilized for estimating the

maintainability of object-oriented software. They

contrast the prediction accuracy of proposed model

with 4other prevailing models: MLR, SVR, ANN,

and regression tree (RT) and stated that MARS is

best model to be used as far as maintainability of

prediction is concerned.

Hu and Zhong[10]proposed a model depending on

neural network to predict software module risk.

Software quality has been estimated by utilizing the

learning vector quantization network.

Arvindar et al. [11] predicted the software

maintenance effort by application of diverse soft

computing approach. Two software products were

taken as dataset and they observed that proposed

approach is useful for the creation of accurate

models to consider the maintenance effort. In their

analysis maintenance effort is selected as dependent

variable and eight OO metrics as independent

variable.

III. PROBLEM FORMULATION

Maintainability prediction in software industry is a

continuous process and affects almost all segments

of the Software Development Life Cycle (SDLC)

and even after that in terms of maintainability and

Quality of service. Maintainability prediction can

include decisions regarding the issue of funds,

deployment of manpower for development team,

testing manpower regularization and many others.

While economic decisions are taken on the basis of

software cost estimation models, on the other hands,

decision regarding the regularization of software

testing team depends a lot on the number of reported

bugs and fault prediction. Reliability of software is a

direct consequence of the probability of fault

occurrence. Thus fault prediction and maintainability

of the software are highly correlated term. All these

are known as external metrics which needs to be

predicted in advance for optimal maintainability

prediction process.

Over the recent years, it has been found that all these

factors depends a lot on some of the factors or

parameters of the software, more commonly known

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 37 Number 2- July 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 92

as software internal metrics. Various researches has

been done on finding the influence of these internal

metrics on the external metrics. A strong correlation

is found to exist with some of the internal software

metrics. Apart from that there seems to exist some

strong correlation among the internal software

metrics itself. This thesis aims at finding these

correlations using a novel Principle Component

Analysis based feature selection methodology so that

they can be utilized for improved maintainability

prediction using Multi-Level Perceptron.

IV. PROPOSED METHODOLOGY

The process involved in the thesis can be briefly

summarised as:

Step 1: Finding the various factors affecting

maintainability prediction in SDLC.

Step 2: Finding the correlation between internal and

external software metrics.

Step 3: Finding cross correlation among the metrics.

Step 4: Development of Principle Component

Analysis for Feature Selection.

Step 5: Using Feature selection for finding

significant features from vast number of attributes.

Step 6: Development of Hybrid PCA-MLP

algorithm for improved maintainability prediction.

Step 7: Maintainability prediction parameter

prediction.

Step 8: Dataset will be used from Promise

Repository of NASA.

Step 9: KLOC (Kilo Lines of Code), McCabe’s

Cyclomatic Complexity, Halstead Volume, Program

Length, Number of Comments, Effort Estimate, etc.

A. Performance Parameters

These are the performance parameters on which our

algorithm accuracy, efficiency and complexity

would be measured.

i) Accuracy

 Accuracy: is the proportion of the total

number of predictions that were correct

 Error rate (misclassification rate)= 1 – AC

Accuracy =

ii) Precision

 Precision or Confidence (as it is called in

Data Mining) denotes the proportion of

Predicted Positive cases that are correctly

Real Positives.

 Precision is defined below:

Precision = Confidence = tpa = = =

iii) Recall

 Recall or Sensitivity (as it is called in

Psychology) is the proportion of Real

Positive cases that are correctly Predicted

Positive.

Recall = Sensitivity = tpr = = =

iv) F-Score/Measure

 The F-Measure computes some average of

the information retrieval precision and

recall metrics.

 The F-measure of cluster j and class i is

defined as follows:

 F-measure is computed using the harmonic

mean:

o Given n points, x1, x2, …, xn, the

harmonic mean is:



 So, the harmonic mean of Precision and

Recall

B. Comparison Parameter’s

These parameters help us in comparing our

algorithm with other algorithms and techniques

which are used for software quality prediction.

i) Confusion Matrix

 A table of confusion (sometimes also

called a confusion matrix).

 Is a table with two rows and two columns

that reports the number of false

positives, false negatives, true positives,

and true negatives.

Table 1 –Confusion Matrix

 Predicted Condition

 Total

Population

Predicted

Condition

(Positive)

Predicted

Condition

(Negative)

Actual

Condition

Actual

Condition

(Positive)

A: True

Positive

B: False

Negative

Actual

Condition

(Negative)

C:

False

Positive

 D:

True

Negative

C. Multilayer perceptron (MLP)

A multilayer perceptron (MLP) is a feed

forward artificial neural network model that maps

sets of input data onto a set of appropriate outputs. A

multilayer perceptron composed of many layers of

nodes in a directed graph, with each layer associated

to the next one. Excluding for the input nodes, each

node is a neuron (or processing element) with a non-

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 37 Number 2- July 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 93

linear activation function. MLP utilizes a supervised

learning technique called back propagation for

training the network. Multilayer perceptron is a

modification of the standard linear perceptron and

can differentiate data which are not linearly

separable. The multilayer perceptron categorised of

three or more layers of nonlinearly-activating nodes

and is hence considered a deep neural network.

Every node in one layer connects with a certain

weight to each node in the following layer.

Fig 1: Multilayer perceptron Model

Fig 2: Multi layer perception Flow Chart

D. Principal Components Analysis

In principal components analysis (PCA) and factor

analysis (FA) one desires to extract from a set of p

variables a reduced set of m components or factors

that accounts for most of the variance in the p

variables. On the other hand, we desire to minimize

a set of p variables to a set of m underlying super

ordinate dimensions. Every factor is calculated as a

weighted sum of the p variables. The i
th

 factor is

thus

pipiii XWXWXWF 2211

One can state every of the p variables as a linear

combination of the m factors,

jmmjjjj UFAFAFAX 2211

Where Uj is the variance that is unique to variable j.

This process is attained by estimating a matrix of

coefficients whose columns are called eigen vectors

of the variance-covariance or of the correlation

matrix of the data set. PCA is a method to study the

structure of the data, with emphasis on determining

the patterns of co-variances among variables. Thus,

PCA is the study of the structure of the variance-

covariance matrix. In practical terms, PCA is a

method to identify variable or sets of variables that

are highly correlated with each other. Some basic

consequences of the process are that:

 All original variables are involved in the

calculation of PC scores

 The sum of variances of the PC's equals

the sum of the variances of the original

variables when principle component

analysis is depending on the variance-

covariance matrix, or the sum of the

variances of the standardized variables

when principle component analysis is

depending on the correlation matrix.

 There are p eigen values (p=number of

variables in the data), everyone is

connected with one eigenvector and a PC.

Therefore, the sum of eigenvalues

depending on the variance-covariance

matrix is equal to the sum of variances of

the original variables.

Principle component analysis is depending based on

the correlation matrix is equal to using principle

component analysisdepends on the variance-

covariance of the standardized variables. Due to the

standardized variables have variance equals to 1, the

sum of eigenvalues is p, the number of variables.

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 37 Number 2- July 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 94

Fig.2: PCA Flow Chart

V. RESULTS

First Correlation analysis is done on the software

maintainability data and the correlations are found

out between various metrics. The results of the

correlation are shown below.

Fig. 3(a): Correlation between Mc Cabes LOC vs Halstead

Volume

Fig. 3(b) :Cross-Correlation between Mc Cabes LOC and
Halstead Volume

The PCA is applied using these correlation values

and the results are shown below

Fig. 4(a): variance of extracted principle components.

Fig.4(b):6 extracted PCA components and correlations with time.

After application of PCA and MLP, the following

confusion matrix is obtained:

Confusion matrix=

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 37 Number 2- July 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 95

Where value for TP= 2106, FP=411, TN=8340,

FN=28

Fig.5:Confusion Matrix

In order to calculate the values for accuracy,

prediction, recall, f-score values generated in

Confusion Matrix are applied to their respective

formulas i.e.

Accuracy= ----- (1)

Precision= ----- (2)

Recall= ----- (3)

Fscore= ----- (4)

The results have also been compared to that of an

Artificial Neural Network and a comparison of our

proposed algorithm with ANN in terms of accuracy,

precision, recall and F-score is presented below.

Table 2:Comparing Performance of ANN and

Proposed Algorithm

 Accuracy Precision Recall F-Score

Proposed

Algorithm

95.9669 83.671 98.6781 90.5612

ANN 94.9564 80.3388 98.4296 88.4688

As observed the performance of our proposed

algorithm on the same data set is better in terms of

accuracy, precision and F-Score while the recall

remains almost same as compared to ANN. This can

be attributed to the fact that our algorithm is more or

less same in terms of rejection rate and feature

selection doesn’t have much role in rejection rate

thus the Recall value is almost unaffected.

VI. CONCLUSION AND FUTURE

SCOPE

Predicting Software metrices in advance is an

important trend these days of which helps in

boosting the performance of software development

process. There are two types of metrices namely;

external and internal. The dependencies among the

external and internal metrices needs to be

understood completely in order to enhance system

performance. This paper proposed an approach of

predicting software maintainability from various

metrices. The correlation between various metrices

has been found out and the regression line is plotted.

Also the pearson correlation coefficient is calculated

and shown. A hybrid Principle Component

Analysis-MultiLayer Perceptron model was

proposed and utilized for the prediction of software

maintainability. The PCA is first applied to reduce

the dimensions of the data and extract meaningful

features and the improved dataset is then utilized by

MLP for maintainability prediction. The

performance is found in terms or accuracy,

precision, recall and F-Score. The results are found

to be quite encouraging.

In future other algorithms like Linear Discriminant

Analysis can be applied for dimensionality

reduction. Also Neural Networks can be utilized for

prediction. The developed algorithm can be tested on

other datasets and hybrid algorithms can be

developed for the same.

REFERENCES

[1] Tashtoush, Yahya, Mohammed Al-Maolegi, and

BassamArkok. "The correlation among software complexity

metrics with case study." arXiv preprint

arXiv:1408.4523 (2014).

[2] Khairuddin, H., Elizabeth, K., 1996. A Software

Maintainability Attributes Model, Malaysian Journal of

Computer Science, Vol. 9, Issue 2, pp: 92-97

[3] Fioravanti, F., Nesi, P., 2001. Estimation and Prediction

Metrics for Adaptive Maintenance Effort of Object - Oriented

Systems, IEEE Transactions on Software Engineering, Vol.

27, Issue 12, pp: 1062–1084.

[4] Bandini, S., Paoli, F. D., Manzoni, S., Mereghetti, P., 2002. A

support system to COTS based software development for

business services , Proceedings of the 14th International

Conference on Software Engineering and Know ledge

Engineering, Ischia, Italy, Vol. 27, pp: 307–314.

[5] Ahn, Y., Suh, J., Kim, S., Kim, H., 2003. The Software

Maintenance Project Effort Estimation Model Based on

Function Points, Journal of Software Maintenance: Research

and Practice, Vol. 15, Issue 2, pp: 71-85.

[6] Ardimento, P., Bianchi, A., Visaggio, G., 2004. Maintenance-

oriented Selection of Software Components, Proceedings of

8th European Conference on Software Maintenance and

Reengineering, pp: 115 –124.

[7] .Riaz, M., Mendes, E., Tempero, E. D.: A Systematic Review

of Software Maintainability Prediction and Metrics. In:

ESEM 2009, 2009, pp. 367-377.

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 37 Number 2- July 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 96

[8] M. M. T. Thwin,T. S. Quah, “Application of neural networks

for software quality prediction using Object-oriented

metrics”, Journal of systems and software, Vol.76, No.2,

pp.147-156, 2005.

[9] Zhou Y, Leung H (2007) Predicting object-oriented software

maintainability using multivariate adaptive regression splines.

J SystSoftw 80(8):1349–1361. doi:10.1016/j.jss.2006.10.049.

[10] Q. Hu and C. Zhong, “Model of predicting software module

risk based on neural network”, Computer Engineering and

Applications, Vol.43, No.18, pp.106-110, 2007.

[11] Kaur, K. Kaur and R. Malhotra, “Soft Computing

Approaches for Prediction of Software Maintenance Effort,”

International Journal of Computer Applications, Vol. 1,

no.16, 2010.

[12] Kajko-Mattsson, M., Canfora, G., Chorean, D., van Deursen,

A., Ihme, T., Lehmna, M., Reiger, R., Engel, T., Wernke, J.,

2006. A Model of Maintainability – Suggestion for Future

Research, Proceedings of International Multi-Conference in

Computer Science & Computer Engineering (SERP’06), pp:

436-441.

[13] Grover, P. S., Kumar, R., Sharma, A., 2007. Few Useful

Considerations for Maintaining Software Components and

Component -Based Systems. ACM SIGSOFT Software

Engineering Notes, Vol. 32, Issue 4, pp: 1-5.

[14] Kumar, Avadhesh, Rajesh Kumar, and P. S. Grover. "An

evaluation of maintainability of aspect-oriented systems: a

practical approach." International Journal of Computer
Science and Security 1.2 (2007): 1-9.

[15] Zavvar, Mohammad, and FarhadRamezani. "Measuring of

Software Maintainability Using Adaptive Fuzzy Neural
Network." International Journal of Modern Education &

Computer Science 7, no. 10 (2015).

[16] Reddy, B. Ramachandra, SahilKhurana, and AparajitaOjha.
"Software Maintainability Estimation Made Easy: A

Comprehensive Tool COIN." In Proceedings of the Sixth

International Conference on Computer and Communication
Technology 2015, pp. 68-72. ACM, 2015.

http://www.ijettjournal.org/

