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Abstract— Software quality is an important factor 

since software systems are playing a key role in 

today’s world. There are several perspectives within 

the field on software quality measurement. This 

measurement is frequently used so many defects which 

can cause crashes, failures, or security breaches 

encountered in the software. Testing the software for 

such defect is essential to enhance the quality. 

However, due to the increase in intricacy of software 

manual testing was becoming extremely time 

consuming task and some automatic supporting tools 

have been developed. One such supporting tool is 

defect prediction models. Some defect prediction 

models can be found in the literature and most of them 

share a common procedure to develop the models. In 

general, the models’ development procedure indirectly 

assumes that underlying data distribution of software 

systems is relatively stable over time. But, this 

assumption is not necessarily true and consequently, 

the reliability of those models is doubtful at some 

points in time. 
 

Keywords - feature selection, ANFIS, LDA, 

parameters, approaches. 

I.  INTRODUCTION 

This chapter discusses the background knowledge 

about the thesis topic and the motivation behind the 

bug prediction. It also discusses the categories of bug 

prediction approaches and bug prediction approaches.  

 

1.1 Background 

 

Bug prediction generated widespread interest for a 

considerable period of time, leading to more than a 

hundred publications in the last ten years. The driving 

scenario is resource allocation: Time and manpower 

being finite resources, it makes sense to assign 

personnel and resources to software components that 

are likely to generate bugs. Researchers proposed code 

metrics, process metrics (e.g., number of changes, 

recent activity) or previous defects. The jury is still 

out on the relative performance of these approaches. 

Most of them were evaluated in isolation, or were 

compared to only few other approaches.  

Limitations of Previous Models: 

 

In 2000s, there had been existed several limitations for 

defect prediction: 

 The first limitation was the prediction model could be 

usable before the product release for the purpose of 

quality assurance. However, it would be more helpful 

if we can predict defects whenever we change the 

source code.  

 

The second limitation is that it was not possible or 

difficult to build a prediction model for new 5 projects 

or projects having less historical data. As use of 

process metrics was getting popular, this limitation 

became the one of the most difficult problems in 

software defect prediction studies.  

 

 The third limitation was from the question, “are the 

defect prediction models really helpful in industry?” 

In this direction, several studies such as case study and 

proposing practical applications have been conducted. 

 

1.2 Motivations 

 

 We surveyed approaches to defect prediction, the 

kind of data they require and the various datasets on 

which they were validated. Here we recall the main 

bug prediction families and observe why techniques 

are difficult to compare. Defect prediction techniques 

may be divided into 3 categories: 

 

1. SCM approaches use information extracted from 

versioning systems, assuming that recently or 

frequently changed files are the most probable source 

of future bugs.  

 

2. Single-version approaches. These technique do not 

need the history of the system, but analyze its current 

state in more detail, using a variety of metrics.  

. 

3. Other approaches exploit different types of data 

such as network metrics computed on developer-

artifact networks or graphs of binary dependencies, 

cohesion measurements based on information retrieval 

techniques, call structure metrics, etc.  

 

1.3 Overview of Software Bug Prediction Process 

 

Fig 1 shows the common process of software defect 

prediction based on machine learning models. Most 

software defect prediction studies have utilized 

machine learning techniques. Each instance can 

represent a system, a software component, a source 

http://www.ijettjournal.org/


 International Journal of Engineering Trends and Technology (IJETT) – Volume 38 Number 2- August 2016 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 86 

code file, a class, a function, and a code change 

according to prediction granularity. 

 

The prediction model can predict whether a new 

instance has a bug or not. The prediction for Bug- 

proneness (buggy or clean) of an instance stands for 

binary classification, while that for the number of 

bugs in an instance stands for regression. 

 

 

 
Fig 1 Common Process of Software Defect Prediction 

 
 

Table 1: Categories of bug prediction approaches 

 

1.5 Bug Prediction Approaches 
 

A.   Code Churn 

Code Churn approach mainly based on the lines 

modified in the software system. In this, source code 

files purely assumed as text files. It computes lines 

modified in a source code file, like number of added 

lines, number of lines deleted from source code and 

lines changed per revision.  

 

B. Fine Grained Source code Changes (SCC) 

H1:- SCC posses a stronger correlation with the 

number of bugs then lines modified.  

H2:- SCC gives better results to differentiate source 

files into buggy and not bug prone files than LM. 

H3:- SCC gives better results than LM while 

predicting the number of bugs in source files. 

C. Fine  Grained Bug Severity Prediction 
 

 In this approach previous bug reports are 

automatically analyzed. These are analyzed on the 

basis of assigned severity labels. These labels assigned 

on the basis of how much that bug effect the system 

and when it is necessary to detect that bug and remove 

it. In this approach five severity labels are assigned 

named: blocker, critical, major, minor, and trivial. In 

this approach for comparison with the previous data, 

instead of using NASA data set, the files that stored in 

the bugzilla are used for comparison. The limitation of 

this approach is that we make assumption of the 

complexion  of the bug on the basis of its previous 

occurrence but there may be that bug can create  more 

critical then the time when it occurred in other system. 
 

D. Reducing Features to improve Code Changes 

Based Bug Prediction 
 

In this approach machine learning based classifiers are 

trained on the selected features of history data. After 

that these classifiers are used on the new systems to 

predict the bugs that are produced due to changes in 

the system.  
 

E. Sampling-based approach to software defect 

prediction 

In this approach some modules are taken as samples 

from all modules of source code. A classification 

model is constructed based on sample to check the 

quality of sampled module. Then this classification 

model is used on the un-sampled modules to predict 

the defects. 

 

1.6 Applications on Defect Prediction 

 

One of major goals of defect prediction models is 

effective resource allocation for inspecting and testing 

software products. However, the case studies using 

defect prediction models in industry is few. In this 

reason, many studies consider cost-effectiveness. A 

recent case study conducted in Google by based on the 

number of closed bugs found that developers preferred 

Rahman‟s algorithm.  
 

II. LITERATURE SURVEY 

This chapter contains the literature survey which 

describes the related work previously done by the 

researchers on the bug prediction. 

A. E. Hassan [1] proposed a new approach to predict 

the bugs in the software on the basis of how much 

complex the code change process is.  This approach 

not only focuses on how much code is changed but 

also focuses on when the code is changed. This 

approach is based on the assumption that complex 

change process of code creates more defaults in the 

software system. In this paper he give three models to 

measure the code change process‟s complexity.  

Emanuel Giger et. al. [2] compares the two bug 

prediction approaches. They compare fine grained- 

source code changes approach and code churn 

approach using Eclipse platform‟s dataset with 

Type  Rational  Used 

By 

Change metrics Bugs are caused by changes.  

Previous defects Past defects predict future defects.  

Source code 

metrics 

Complex components are harder 

to change, and hence error-prone. 

 

Entropy of changes Complex changes are more error 

prone than simpler ones. 

 

Churn (source 

code metrics) 

Source code metrics are a better 

approximation of code churn. 

 

Entropy (source 

code metrics) 

Source code metrics better 

describe the entropy of changes. 
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machine learning algorithm. They compare both 

approaches bases on three hypotheses. In first 

hypothesis they assume that there is good correlation 

of SCC with the number of bugs as compare to lines 

modified.  

Youn tian et. al. [3] purposed a new approach for bug 

prediction. In this approach previous bug reports are 

analyzed on the basis of severity labels of bugs 

automatically and new severity labels are assigned on 

the basis of information of bugs that is collected from 

the past bug reports. This information report contains 

the information about bug whether the bug is textual 

or not contains any text.  

Shivkumar Shivaji et. al. [4] proposed multiple feature 

selection approaches. This proposed method is applied 

to bug prediction approaches based on classification. 

The proposed approach removes irrelevant features 

until optimal performance is reached. The total 

number of features used for training is substantially 

reduced, often to less than 10 percent of the original.  

Phiradet Bangcharoensap et. al. [5] presented an 

approach to rapidly place the buggy file. The text 

mining method categorized the files depending on the 

similarity among source code and bug report. The 

code mining method utilizes source code product 

metrics. The performance of proposed method 

indicates gain around 20%in top 1 prediction. 
 

Marco D‟Ambros and Michele Lanza [6] proposed a 

new visual technique to reveal the relationship among 

software and its bugs. Development of software 

artifacts may be characterized by putting 2 aspects 

nearer to each other.They validate the approach on 3 

very large open source software systems. The 

approach is based on the application of Discrete Time 

Figs at any level of granularity.  
 

Alberto Bacchelli et. al. [7] in this paper a metrics has 

been produced which measures the source code 

artifacts. Moreover, accuracy of other approaches for 

prediction of defect may be developed using popular 

metrics. This approach not only focuses on how much 

code is changed but also focuses on when the code is 

changed Also they discovered the data collected in 

email archives is associated to the defect found in the 

system. 
 

K. E. Emam et. al. [8] studied an object-oriented 

design metrics. These metrics helps to make several 

predictions models. This information report contains 

the information about bug whether the bug is textual. 

In this, data is used which is collected from the one 

version of java application for building prediction 

model. This model has higher accuracy.  
 

A. E. Hassan and R. C. [9] presented a new approach 

to assist managers in determining which subsystems to 

focus their limited resources on. By using this 

approach faults are located in a timely manner and fix 

them as soon as possible. The approach uses ideas that 

have been researched in the literature of web and file 

systems.  

 

A. Marcus et. al. [10] defines the conceptual cohesion 

of classes, which captures new and complementary 

dimensions of cohesion compared to a host of existing 

structural metrics. PCA of measurement results on 

three open source software systems statistically 

supports this fact.  
 

III. METHODOLOGY 
 

The thesis proposes a novel idea of bug prediction 

using Adaptive Neuro-Fuzzy Inference System aided 

by Linear Discriminant Analysis for dimensionality 

reduction. This thesis aims to develop a reliable model 

for bug prediction. The major inspiration behind this 

is the fact that more time and manpower should be 

devoted to those segments of the software which is 

more prone to bugs. The problem with any bug 

prediction algorithm is testing its validity with respect 

to previous approaches due to lack of common 

platform. Our approach to solve the bug prediction 

problem is a combination of various segments. 
 

The major step of our methodology is explained 

below: 
 

1. Data set is first extracted from the Promise 

Repository of NASA and converted to a readable 

format.  

2. The dataset contains several numbers of columns 

which needs to be modified.  

 
 

Fig 2.  Flow chart of Methodology 

  

3. Load Discriminant Analysis is applied on the 

dataset and a weight factor is calculated which is 
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a mxn matrix where m is the number of classes 

and n is the number of attributes. 

4. The weight matrix is multiplied with each class of 

the data and the reduced data is saved into a new 

file.  

5. ANFIS algorithm is applied on the reduced data 

and the reduced data is separated into training and 

testing part.  

               

3.1 Hardware /Software Requirements  

 

Hardware Requirements  

• Processor:  Intel core 2 Duo with CPU clock rate 2.10 

GHZ. 

• RAM : Memory two DDR2 with 3 GB 

• HDD: SATA with capacity of 500 GB. 

3.2 Software Requirements 
• Operating System : Microsoft 7  x86 

• MATLAB R2013a 

• MS Word:  MS Word is used for documentation 

purpose. 

 

This chapter introduces the Adaptive Nеuro Fuzzy 

Inference System and Linear Discriminent Analysis 

algorithms proposed in methodology. 
 

Adaptive Nеuro Fuzzy Inference Systеm (ANFIS): This 

algorithm was first introduced by Jang. Both the fuzzy 

logic and neural network makes possible to design the 

Adaptive Nеuro Fuzzy Inferencе System. ANFIS is 

basically a graphical nеtwork representation of 

Sugеno-type fuzzy systems endowed with the neural 

learning capabilities.ANFIS are a class of adaptive 

networks that are functionally equivalent to fuzzy 

inference systems. The network consist nodes with 

specific functions collected in layers. ANFIS is able to 

construct a network realization of IF / THEN rules. 
 

Neuro-fuzzy modeling is a method where the fusion of 

neural networks and fuzzy logic find their strengths. 

This fuzzy modelling applied heuristic learning 

scheme which is derived from the neural network. It is 

required to completely map the neural network 

knowledge to fuzzy logic.  

 

3.3 Fuzzy Inference System 

 

Fuzzy inference system performs the following 

operations: 

 Fuzzification of the input variables. 

 Determination of membership functions for the 

parameters. 

 Application of the fuzzy operator in the antecedent. 

 Implication from the antecedent to the consequent. 

 Defuzzification. 

3.4 Train Network 

 

In this work we use an Adaptive Neuro Fuzzy 

Inference System which allows to train and tune a 

Fuzzy Inference System. It includes a fuzzy system 

which finds the relationship between quality 

parameters and the overall QoS(input/output 

relationship). The system is trained using learning 

techniques in order to optimize the membership 

functions based on a collection of input/output dataset.  

 

3.5 Structure of the ANFIS network 

 

 
Fig 3 Equivalent ANFIS 

 

A two inputs (x and y) and one output (z) ANFIS 

Rule 1: IF x is A1  and y is B1 , 

then f p x q y r1 1 1 1  

Rule 2: IF x is A2  and y is B2 , 

then f p x q y r2 2 2 2  
 

3.6 ANFIS architecture   

 

Layer 1(Input nodes): Nodes produces membership 

grades of the crisp inputs that belong to each of 

convenient fuzzy sets by using the membership 

functions. 
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The computation time is reduced by using a 

dimensionality reduction technique known as Linear 

Discriminant Analysis which is an improved 

algorithm over the traditional Principal Component 

Analysis. 

 

Linear Discriminant Analysis (LDA) is popularly used 

as dimensionality reduction approach in the pre-

processing step for pattern-classification and machine 

learning applications.  

LDA is closely related to analysis of variance 

and regression analysis, which also attempt to express 

one dependent variable as a linear combination of 

other features or measurements. 

 Linear discriminant analysis has 

continuous independent variables and a categorical 

dependent variable. 

3.7 LDA Algorithm: 

 

Input: data matrix A. 

Output: transformation matrix G. 

1: Calculate S  and Sb. 

2: Perform the singular value decomposition of Sw as 

Sw = URVT, where U = V because Sw is symmetric. 

3: Let V = [v1,. . .,vq,vq+1,. . .,vm] and Q = [vq+1,. . 

.,vm], q = rank(Sw). 

4: Compute e Sb, where e Sb ¼ QQTSb. 

 

5: Calculate the eigenvectors corresponding to the set 

of the largest eigenvalues of e Sb and use them to 

form the transformation matrix G. 

Applications of Linear Discriminant Analysis: 

 Bankruptcy prediction 

 Face recognition 

 Marketing 

 Biomedical studies 

 Earth Science 

 

 

 

 

3.8 Data Reduction using LDA 

 

After the LDA is applied on the data, a weight for data 

manipulation is found is transformation of data is done 

by multiplying the weights with each data point. The 

output of the LDA is a weight matrix which is of size 

mxn where „n‟ is the total number of attributes and n 

is the total number of classes. The weights of row are 

multiplied with the data of all points which belongs to 

first class. Similarly, it is extended.  
 

DOUT = WIN*DIN             

 For class i=1,2,3,4 

 

IV. RESULTS 

To perform bug prediction, we are using standard bug 

prediction data set. Bug prediction data set is a large 

collection of metrics and models of software systems 

and their previous versions. The main target of such 

datasets is to allow people to compare different bug 

prediction approaches and to evaluate whether a new 

technique is an improvement over existing ones. The 

dataset is especially designed to perform and evaluate 

bug prediction at the class level. The bug prediction 

dataset comprises of data about the following software 

systems :- Eclipse PDE UI, Equinox Framework, 

Lucene, Mylyn, Eclipse JDT Core. 

For each system the dataset includes the following 

pieces of information: 

1. Biweekly versions of the systems parsed 

(with the inFusion tool) into object-oriented 

models, provided as mse files. 

2. Historical information extracted from the cvs 

change log, including reconstructed 

transaction and links from transactions to 

model classes. 

 

3. Value of 15 metrics computed from cvs 

change log data, for each class of the 

systems. 

4. Values of 17 source code metrics, for each 

version of each class. 

 

5. Categorized (with severity and priority) post-

release defect counts for each class. 
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Fig 4: Data Set 

 

This Fig represents the weight outputs of the LDA 

when LDA is applied on the data set. As it can be 

observed, the weights are a function of LDA 

parameters and varies accordingly as the dataset is 

varied. The weights for certain parameters are quite 

high as compared to others. These are those 

parameters which have high importance.  

 

 
 

Fig 5  Shows plot weights of LDA output for class 1 

 

 
 

Fig 6 Shows plot weights of LDA output for class 2. 

 

The above Fig represents the weight output for class 2 

after it is passed through LDA. As it can be observed, 

the weights are high for some parameters and these 

parameters also depends on the class for which they 

are predicted.  

 

 

 
 

Fig 7 Shows plot weights of LDA output for class 3 

 

The above Fig 7 represents the weight outputs after 

being passed through LDA for class 3. The weights 

are found to be quite high for 8
th

, 10
th

 and 14
th

 

attribute.  
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The Fig 8 represents the weights value of LDA output. 

The weights are varied and it forms a 4x16 matrix 

which is utilized for different classes. The values are 

multiplied with the values for different classes values 

and the results are obtained. 

 

Fig 9 represents the error in training the ANFIS 

algorithm for bug prediction and as the algorithm is 

trained for bug prediction the error is decreasing with 

time and after certain iterations, it becomes saturated 

and the error cannot decrease beyond a certain limit. 

 

 

 
 

Fig 8 Assigned Weights 

 

The algorithm has also been executed without the aid 

of LDA. The ANFIS algorithm is applied on the 

complete data without feature selection and the output 

of the performance is shown below. 

 
 

Fig 9 Showing error decreasing with time 

 

 
 

Fig 10 Showing error decreasing with time without LDA 

 

The performances are both compared and are shown 

in Fig 11 as shown below. 

 

 
 

Fig 11 Showing Comparison 

V. CONCLUSION AND FUTURE SCOPE 

Bug prediction shows the resource allocation problem: 

Having an accurate estimate of the distribution of bugs 

across components helps project managers to optimize 

the available resources by focusing on the problematic 

system parts. Many Different approaches have been 

proposed for predicting future defects to be occurred 

in software systems, which vary in the data sources 

they use and in the systems they were validated. We 

have introduced a benchmark to allow for common 

comparison, which provides all the data needed to 

apply several prediction techniques proposed in the 

literature. In this thesis we develop a hybrid model for 
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bug prediction using machine learning techniques. 

The information contained in the dataset is reduced in 

dimension for better computation using Linear 

discriminate analysis. When the data set is analyzed 

by LDA then weights are assigned to those features 

that produce more bugs in the system. Reduced 

dataset is then trained and tested by the using 

Adaptive Neuro Fuzzy Inference System. The results 

are found to be satisfactory and the error in bug 

prediction decreases as the iteration count increases. 

Thus, there our proposed algorithm is proved to be 

well within acceptable limits in terms of convergence 

and accuracy and also in terms of computation time as 

dimension of the problem is reduced using Linear 

Discriminant Analysis. 

In future, the correlation of the features can be utilised 

as parameters of LDA and also other feature reduction 

techniques can be applied on the dataset for better 

feature selection. Other algorithms for classification 

like K-NN, K-means can be applied and the results 

can be compared. Hybrid algorithms can be developed 

for classification and New fuzzy  models can be 

utilised for the same. 
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