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Abstract—Utility mining developed to address the 

limitation of frequent itemset mining by introducing 

interestingness measures that satisfies both the 

statistical significance and the user’s expectation. 

Existing high utility itemsets mining algorithms two 

steps: first, generate a large number of candidate 

itemsets and second, identify high utility itemsets 

from the candidates by an additional scan of the 

original transaction database. The performance 

holdup of these algorithms is the generate more no 

of candidates itemsets and increasing of the number 

of long transaction itemsets it cannot work minimum 

utility threshold, the situation may become worse 

and also creating more no tree.  To overcome these 

problems, propose an efficient algorithm, namely 

UP-Growth (Utility Pattern Growth), for mining 

high utility itemsets with pruning techniques for 

pruning candidate itemsets. The information of high 

utility itemsets is stored in a special data structure 

named UP-Tree (Utility Pattern Tree) such that the 

candidate itemsets can be generated with only two 

scans of the database. The performance of UP 

growth+ was evaluated in comparison with the 

state-of-the-art algorithms on different types of 

datasets. The experimental results show that UP 

growth+ outperforms other algorithms in terms of 

both execution time and memory space under 

minimum utility threshold is, the more observable its 

advantage will be it can achieve the level of about 

two orders of magnitude faster than the state-of-the-

art algorithms on dense dataset, and more than one 

order of magnitude on sparse datasets. 

 

Keywords—Utility Pattern Growth, UP 

Tree, High Utility mining, reducing search 

space, Pruning. 

 

I.  INTRODUCTION 
Data mining is the process of extracting itemsets from 

the database that is useful for decision making process 

to increase awareness and market analysis. One of the 

important tasks is high utility mining which refers to 

the discovery of more profitable things. Mining the 

high utility itemset from the transaction database when 

the utility of an item is greater than or equal to user 

specified minimum utility threshold then item is 

profitable. 
For example, assume the frequency of item A is 10, 

item B is 5, and itemset AB is 3. The profit of item A 

is 3, B is 2. The utility value of A is 10 * 3 = 30, B is 

5* 2= 10, and AB is 3 * 3 + 5 * 2 = 19. If the 

minimum utility threshold is 20, A is a high utility 

itemset a number of algorithms have been proposed 

for high utility itemset mining. The existing algorithm 

based on two phase [1], TWU mining [2], UMMI 

algorithm [3]. Two phase algorithm mines the high 

utility itemset in two phases using the transaction 

weighted down closure property in phase I to find the 

HTWU (High Transaction Weighted Utility) item. In 

Phase II the high utility itemset is mined from first 

phase output of HTWU item. The TWU mining 

method uses a tree structure to store utility itemsets 

information. The exiting UMMI algorithm is 

introduced to overcome the shortcoming of two phases 

mining, TWU mining which consists of large number 

of HTWU itemsets hence it take more execution time. 

The High utility itemsets can be mined using two 

phase‟s algorithms: maximal phase and utility phase. 

Maximal phase mines the maximal transaction 

weighted utility (MTWU) item using maximal itemset 

property and utility phase discover the high utility 

itemset from MTWU item used Mlex tree. In exiting 

algorithm have some weakness to mining high utility 

itemset: a) Itemset with profit slightly less than the 

user defined threshold value is discarded. For example, 

if the minimum utility threshold is 40, itemsets with 

profit 30 will be pruning the lower threshold utility 

itemsets even though the itemset may be important. b). 

Quantity information about the high utility itemset is 

not reflect that a sales manager is interested. c) Profit 

quantity information is also not provided in the 

existing algorithm. These shortcomings influence the 
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ability to select the more profitable and cost saving 

products.  

II.  EXISTING TECHNIQUE 

The FP-Growth method adopts a divide and conquers 

strategy as follows: compress the database 

representing frequent items into a frequent-pattern 

tree, but retain the item set association information, 

and then divide  the  compressed database into a set of 

condition databases, each associated with one frequent 

item, and mine each such databases. 

Firstly, database is read and frequent items are found 

which are the items are occurring in transactions less 

than minimum support. Secondly database is read 

again to build FP-tree. After creating the root, every 

transaction is read in an ordered way and pattern of 

frequent items in the transaction is added to FP-tree 

and nodes are connected to frequent items list and 

each other. This interconnection makes frequent 

pattern search faster avoiding the traversing of the 

entire tree. When considering the branch to be added 

for the transaction, the count of each and every node 

along the common prefix is incremented by 1. Nodes 

of same items are interconnected where most left one 

is connected to item in frequent items list. If the prefix 

of branch to be added does not exists then it is added 

as a new branch to root. 

 

After constructing the tree mining proceeds as follows. 

Start from each frequent length 1 pattern, construct its 

conditional pattern base, then construct its conditional 

FP-tree and perform mining recursively on such tree. 

The support of a candidate (conditional) item set is 

counted traversing the tree thoroughly. The sum of 

count values at least frequent item‟s nodes i.e., base 

node gives the support value.  

 

 
Figure 1.1 FP-Growth Example 

 

III.  LITERATURE REVIEW 

In many existing algorithms that are often unclear and 

also inaccurate to find the high utility itemsets from 

long transaction itemsets. Fuzzy logic is supportive to 

real life datasets that deal with uncertainty as it gives 

a flexible method to form a high-level concept of 

given problem. Fuzzy logic and data mining together 

present a means for generating more conceptual 

utility mining at a higher level. Ferdinando et al. 

presented a method for finding association rules from 

datasets based on fuzzy transforms technique.  
Apriori Gen algorithm [6] was used to extract fuzzy 

association rules represented in the form of linguistic 

terms. A pre-processing phase was used to determine 

the optimal fuzzy partitions of quantitative attribute 

domains. 
 
Utility Mining covers all aspects of “profitable” 

utilities that helps in detecting rare high utility 

itemsets from the transaction. High Utility Rare 
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Itemset Mining (HURI) is very useful in several real-

life datasets. In Jyothi et al.presented a survey of 

different approaches and algorithms for mining the 

high-utility itemsets and rare itemset mining. Ashish 

et al [8] presented a fast and efficient fuzzy ARM 

algorithm on large datasets. The algorithm was 8 to 

19 times faster than traditional fuzzy ARM on large 

standard datasets. In [2], unlike most two-phased 

ARM algorithms, the authors presented single itemset 

processing as opposite to concurrent itemset 

processing at each k no of level, recording some 

performance improvements. 
In C. Saravanabhavan et al. proposed a tree based 

mining high utility itemsets. Firstly, the authors 

developed the utility frequent pattern tree structure to  

maintain the information of utility itemsets. Next the 

pattern growth methodology was used to mine the  

utility pattern sets entirely. Two algorithms, UP-

Growth (Utility Pattern Growth) and UP-Tree (Utility 

Pattern Tree) are proposed  [14] for mining high 

utility itemsets. Also, a set of effective strategies are 

discussed by SadakMurali et al, proposed for 

precisely pruning candidate itemsets. 
In Adinarayanareddy.B, was proposed a modified UP-

Growth (IUPG) algorithm for high utility itemset 

mining. The authors conclude that IUPG algorithm 

performs better than UP-Growth algorithm for 

different threshold values and also IUPG algorithm is 

highly scalable. Ruchi Patel was proposed a parallel 

and distributed method for mining the high utility 

patterns from very large transaction databases. The 

method also prunes the low utility itemsets from 

transactions at the starting  level by using downward 

closure property. 
Koh et al was proposed a modified apriori inverse 

algorithm to generate rare itemsets of user interest. 

The high utility itemsets as a measure usefulness or 

profitability of an itemset [12].These authors paying 

attention on the measures used for mining the utility-

based itemset. Utility based measures uses the utilities 

of the patterns to reflect the user goals. The authors 

makes the official  semantic meaning of utility 

measures and classify existing measures into one of 

the three categories: item level, transaction level and 

cell level. Existing system fused framework was 

proposed for incorporating utility based measures into 

the data mining process via a joined utility function. 
 

One of the most needed areas of the application of 

fuzzy set theory is fuzzy rule-based systems [4]. 

These knowledge extraction tools discovers the 

essential associations contained in a database. Fuzzy 

techniques improves the understandability of buyer 

models. In Casillas et al presented a new approach for 

buyer behaviour modelling which is based on fuzzy 

association rules (FAS). A behavioural model was 

presented which cantered on consumer attitude 

towards shopping itemsets. The proposed algorithm 

efficiently finds the high utility itemsets and pruning 

the lower utility itemset if used defined threshold 

value is low.paragraphs must be indented. 

. 

IV.  TERMS AND DEFINITIONS 

 

Let D = {T1, T2… Tn} be a transaction dataset which 

contains n transaction itemsets and m distinct items, 

i.e. I= {i1, i2… im}. Each transaction itemset is 

represented as {i1: p1, i2: p2… iv:pv}, where {i1, i2, 

…, iv} is a subset of I, and pu (1≤u≤v) is the 

existential probability of item iuin a transaction 

itemset. The size of dataset D is the number of 

transaction itemsets and is denoted as |D|. An itemset 

X = {i1, i2… ik}, which contains k dissimilar items, is 

called a k-itemset, and k is the length of the itemset X. 

 

Definition 1: The support value (SV) of an itemset X 

in a transaction dataset is defined by  number of 

transaction itemsets containing X in it. 

 

Definition 2: The expected support value(expSV) of 

an itemset X in a transaction dataset is denoted as 

expSN(X) and is defined by 

 

 

 

Definition 3: Given a dataset D, the minimum 

expected support threshold is a predefined percentage 

of |D|; correspondingly, the minimum expected 

support value (minExpSV) is defined by 

 

 
 

anitemset X is called a utility itemset if its expected 

support value is not less than the value minExpSV.  

 

Definition 4: The minimum support threshold is a 

predefined percentage of |D|; correspondingly, the 

minimum support value (minSV) in a dataset D is 

defined by 

 

 

Definition 5: The system mining high utility itemset 

and itemsets utility is equal to quantity value 

multiplied by profit. For example, item A occurs in 

different transaction T1 and T5. If the set of (A, T1) = 

{1/L, 0/M, 1/H} and (A, T5) = {0/L, 0/M, 1/H}. If 

their item utilities are obtaining by multiplying 

quantity with profit, item utilities of T1 and T5 will be 

same even though T5 defer a higher quantity value. 

The utility is defined as, 

 

 

Definition 6:The quantity The equation to find the 

quantity value of item ip in transaction Tq is denoted 

as f (ip,Tq) which is defined as,  
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Where fq (ip,Tq,  j ) is the value of  region j and  

weight (j)  is a variable parameter defined by the 

region. If a region is low, then the weight should be 

low when compared to the region middle and high. 

Particular weights are assigned for area low, medium 

and high.  

 

Definition 7:The transaction utility can be defined as 

the sum of the utilities of item occurring in the 

transaction. The equation denoting transaction utility 

is 

 

Definition 8: The transaction weighted utilityit is the 

sum of transaction utilities of item occurring in the 

particular transaction for an item. The equation 

denoting transaction weighted utility can be defined 

as, 

 

V.  PROPOSED SYSTEM 

To improve the mining performance and to avoid 

scanning original database repeatedly, we use a 

compact tree structure, named UP-Tree, and to 

maintain the information of transactions and high 

utility itemsets. Two strategies are used to minimize 

the overestimated utilities stored in the nodes of global 

UP-Tree. In following sections, the elements of UP-

Tree are first defined. Next, the two strategies are 

introduced. 

 

A. The Elements in UP-Tree 

 

 Each node D consists of D.name, D.count, D.nu, 

D.parent, D.hlink and a set of child nodes. D.name is 

the  item name of the node. D.count is the support 

count of that particular node. D.nu is the node utility, 

i.e., overestimated utility of the node. D.parent 

maintains the parent node of D. D.hlink is a node link 

which points to a node whose item name is the same 

as D.name. A table named header table is used to 

facilitate the traversal of UP-Tree. In header table, 

each entry stores an item name, an overestimated 

utility, and a link. The link points to the last 

occurrence of the node which has the same item as the 

entry. By following the links in header table and the 

nodes in UP-Tree, the nodes having the same name 

can be traversed in a better way. 

 

B. Discarding Global Unpromising Items during 

Constructing a Global UP-Tree 

 

The construction of a global UP-Tree can be done 

with two scans of the original database. In the first 

scan, TU of each transaction is calculated. 

simultaneously, TWU of each single item is also 

accumulated. By TWDC property, an item and its 

supersets are unpromising itemsets if its TWU is less 

than the minimum utility threshold. Such an item is 

called an unpromising item. 

 

C. Discarding Global Unpromising Items during 

Constructing a Global UP-Tree 

 

The construction of a global UP-Tree can be done 

with two scans of the original database. In the first 

scan, TU of each transaction is calculated. 

simultaneously, TWU of each single item is also 

accumulated. By TWDC property, an item and its 

supersets are unpromising itemsets if its TWU is less 

than the minimum utility threshold. Such an item is 

called an unpromising item.The tree-based framework 

for high utility itemset mining applies the divide-and-

conquer technique in mining processes. Thus, the 

search space can be divided into smaller subspaces. By 

using strategy DGN, the utilities of the nodes that are 

closer to the root of a global UP-Tree are further 

decreased. DGN is suitable for the databases 

containing more number of long transactions. In other 

words, the more items a transaction has, the more 

utilities can be removed by DGN. On the other hand, 

traditional TWU mining strategy is not suitable for 

such databases since the more items a transaction 

contains, the higher TWU is. 

 

D. Up Growth Plus Algorithm 

 

UP-Growth is efficient than FP-Growth by using 

DLU and DLN to reduce overestimated utilities of 

itemsets. However, the overestimated utilities can be 

nearer to their actual utilities by eliminating the 

calculated utilities that are closer to the actual utilities 

of unpromising items. An improved method, named 

UP-Growth+, for reducing over estimated utilities 

more effectively is introduced. In UP-Growth, 

minimum item utility table is used to decrease the 

overestimated utilities. In UP-Growth+, minimal node 

utilities in each path are used to make estimated 

pruning values closer to real utility values of the 

pruned items. 

After introducing the modification of global UP-Tree, 

the processes and two improved strategies of UP-

Growth+, named DNU and DNN are performed. 

When a local UPTree is being constructed, minimal 

node utilities can also be mined by the same steps of 

global UP-Tree. In the mining process, when a path is 

retrieved, simultaneously minimal node utility of each 

node in the path is also retrieved. 

 

Create Tree (D, ) 

 

INPUT: An uncertain dataset D consisting of n 

transaction itemsets and a predefined user minimum 

expected support threshold . 

 

OUTPUT: A global Tail Node-Tree T. 
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Step 1: Calculate the minimum expected support 

value minExpSV, i.e. minExpSV=| D|× ; count the 

expected support value and support value of each 

transaction item by one scan of dataset. 

Transaction utility can be defined as the sum of the 

utilities of item occurring in the transaction. 

Transaction weighted utility it is the sum of 

transaction utilities of item occurring in the particular 

transaction for an item. 

Step 2: place those items whose expected support 

value are not less than minExpSVto a global header 

table, and sort the items in the header table according 

to the descending order of their support value. 

Step 3: Initially set the root node of the Tree T as null.  

Step 4: Remove the items that are not in the header 

table from each transaction itemset, and sort the 

remaining items of each transaction itemset according 

to the order of the global header table, and get a sorted 

itemsetA. 

Step 5: If the length of itemsetA is 0, process the next 

transaction itemset; otherwise insert the itemsetA into 

the tail node tree T by the following steps: 

a)Store the weight probability value of each item in 

itemsetA sequentially to a list; save the list to an array 

(which is denoted as ProArr); the equivalent series 

number of the list in the array is denoted as ID. 

b) If there has not been a tail node for the itemsetX, 

create a tail node N for this itemset, where 

N.Tail_info.lenis the length of itemsetA, and 

N.Tail_info.Arr_ind= (ID); otherwise, append the 

sequence number ID to N.Tail_info.Arr_ind.  

Step 6: Process the next transaction itemset based on 

above steps until meet all the transaction from 

transaction weight dataset. 

 

E. Mining high utility itemsets from a global tail 

node tree 

 

After a tail node tree is constructed, the algorithm 

tail node tree can directly mine high utility itemsets 

from the tree without additional scan of dataset. The 

details of the mining techniques are described below. 

The algorithm TN-Mine is similar to the algorithm UP 

growth: it creates and processes sub trees recursively.  

 

Mining high utility (T, GH, minExpSV) 

 

INPUT: An FTNT-Tree T, a global header table H, 

and a Minimum expected support value minExpSV. 

 

OUTPUT: The high utility itemsets (HUIs). 

 

Step 1: find the high utility items from header table 

one by one from the last item by the following steps. 

Step 2: choose the current base-itemset(which is 

initialized as null); each new base-itemsetis a high 

utility itemset. 

Step 3: Example consider base item is “Z”LetZ.linksin 

the header table H contain k nodes whose item name is 

Z; we denote these k nodes as N1, N2, …, Nk; because 

item Z is the last one in the header table, all these k 

nodes are tail nodes, i.e., each of these nodes contains 

a Tail_info.The following sub steps. 

a) Create a sub header table subHby scanning the k 

base item branches from these k nodes to the root. 

b) Suppose the sub header table is zero, go to Step 4.  

c): Create sub Tree each and every base item subTree= 

CreateSubTree (Z.link, subH). 

Mining (subTree, subH, minExpSV). 

Step 4: After find the high utility of that base item Z 

and remove that item from header table. 

Step 5: For each of these k nodes denote as ni≤N≤k), 

modify itsTail_infoby the following sub steps: 

a) Alter Ni.Tail_info.lenvalues: Ni.Tail_info.len= 

Ni.Tail_info.len-1. 

b) Move Ni.Tail_infoto the parent of node Ni. 

Step 6: Process the next item of the header table H. 

 

Subprograms:CreateSubTree(all_baseitem_link, 

subH) 

 

INPUT: A list link which records tree nodes with the 

same item name, and a header table subH. 

 

OUTPUT: A high utility itemsets from subT. 

 

Step 1: Initially set the root node of the tree subTas 

zero. 

Step 2: Process each node Ni in the list link by the 

following steps. 

Step 3: Get the tail-node-itemsetof node Nifrom X item 

sets. 

Step 4: Remove those items that are not in the header 

table subHfrom itemsetX, and sort the remaining items 

in itemsetX according to the order of the header table 

subH. 

Step 5: If the length of the sorted itemsetki is 0, process 

the next node of the list link; otherwise insert the sorted 

itemsetX into the FT-Tree subTby the following sub 

steps: 

a) Get the original sequential ID of each 

item of the itemsetX in the corresponding list 

ofProArr: item_ind= {d1, d2, dk} where k is the 

length of itemsetX 

b) Make a copy of N.Tail_info; denote the 

copy as nTail_info. 

b): Alter nTail_infoas the following: 

(1) nTail_info.len= k. 

(2) nTail_info. Item_ind= item_ind. 

(3) if nTail_info.bpis null, set nTail_info.bp[j] to be 

the probability of item Z, i.e. 

ProArr[nTail_info.Arr_ind[j]]; otherwise, set 

nTail_info.bp[j] to be the product of nTail_info.bp[j] 

and the probability of item Z (1 ≤ j ≤ fuzzy_bp.size; the 

array ProArris created when the global tree is created. 

 

VI.RESULT 

The performance of the proposed algorithm UP 

growth plus-Mine. UP Growth is the state-of-the-art 

algorithm employing the pattern-growth approach and 
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FTNT is a new proposed algorithm. So compare UP 

growth plus-Mine with the algorithms FUF-Growth, 

UP-Mine and Fuzzy based UP growth plus on both 

types of datasets: Sparse transaction datasets and 

dense transaction datasets. All algorithms were written 

in java programming language. The configuration of 

the testing platform is as follows: Windows 7 32bit 

operating system, 4G Memory, Intel(R) Dual-Core 

CPU @ 2.60 GHz. 

 

Table-1 Dataset Characteristics 

 

 

Table 1 shows the characteristics of 4 datasets used in 

our experiments. „|D|‟ represents the total number of 

transactions; „|I|‟ represents the total number of 

distinct items; „I‟ represents the mean length of all 

transaction itemsets; „SD‟ represents the degree of 

sparsely or density. The synthetic dataset 

T10I4d100kscame from the IBM Data Generator and 

the datasets and mushroom were obtained from FIMI 

Repository. These four datasets originally do not 

provide probability values for each item of each. 

Table 2. Comparison algorithm of usingT10I4d100k 
Vs No tree created. 

Algorithms No of Tree 

0.04 0.05 0.06 0.07 0.08 0.09 

UF-

Growth + 

369 115 39 17 8 4 

UP 

Growth 

410 232 101 52 43 21 

FIG.1. COMPARISON OF DIFFERENT 
THRESHOLD VALUE WITH TREE 

CREATION 

Fig 1 and Table 1 Show the total number of tree 

nodes generated by UF-Growth and UP, 

respectively, on the synthetic datasets. 

Table 2. Comparison of different 
algorithm using mushroom 

algorithm

s 

No of Tree 

0.0

4 

0.0

5 

0.0

6 

0.0

7 

0.0

8 

0.0

9 

UF-

Growth + 

443 345 234 189 132 112 

UP 

Growth 

546 434 367 264 212 187 

 

 

 

Fig. 2. Comparison of different threshold value with 
tree creation 

Fig 2 and Table 2 Show the total number of tree nodes 

generated by UF-Growth and UP, respectively, on the 

synthetic datasets. 

 

VII.CONCLUSION 

 

The proposed two efficient algorithms named UP-

Growth and UP-Growth+ for mining high utility 

itemsets from transaction databases. A data structure 

named UP-Tree was used for maintaining the 

information of high utility itemsets. PHUIs can be 

efficiently constructed from UP-Tree with only two 

original database scans. Moreover, we developed 

several strategies to reduce the overestimated utility 

and improve the performance of utility mining. In the 

experiment, both real and synthetic data sets were used 

for performance evaluation. Results show that the 

strategies efficiently improved performance by 

reducing both the search space and the no of 

candidates. Moreover, the proposed algorithms, UP-

Growth+, outperform the state-of-the-art algorithms 

substantially when databases contain lots of long 

transactions or a low minimum utility threshold is 

used. 
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