
International Journal of Engineering Trends and Technology (IJETT) – Volume45 Number 4 – March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 183

Mining High Utility Pattern in One Phase

without Candidate Generation using up

Growth+ Algorithm

P.Sri Varshini
#1

, N.Saranya.N
*2

, Uma Maheswari
#3

, Prof.R.Sujatha
#4

#1
B.E Department of Computer Science and Engineering, Sri Krishna College Of Technology, Kovaipudur,

Coimbatore, India-641042
*2

B.E Department of Computer Science and Engineering, Sri Krishna College Of Technology, Kovaipudur,

Coimbatore, India-641042.
#3

B.E Department of Computer Science and Engineering, Sri Krishna College Of Technology, Kovaipudur,

Coimbatore, India-641042.

#4
Professor, Department of Computer Science and Engineering, Sri Krishna College Of Technology,

Kovaipudur, Coimbatore, India-641042.

Abstract—Utility mining developed to address the

limitation of frequent itemset mining by introducing

interestingness measures that satisfies both the

statistical significance and the user’s expectation.

Existing high utility itemsets mining algorithms two

steps: first, generate a large number of candidate

itemsets and second, identify high utility itemsets

from the candidates by an additional scan of the

original transaction database. The performance

holdup of these algorithms is the generate more no

of candidates itemsets and increasing of the number

of long transaction itemsets it cannot work minimum

utility threshold, the situation may become worse

and also creating more no tree. To overcome these

problems, propose an efficient algorithm, namely

UP-Growth (Utility Pattern Growth), for mining

high utility itemsets with pruning techniques for

pruning candidate itemsets. The information of high

utility itemsets is stored in a special data structure

named UP-Tree (Utility Pattern Tree) such that the

candidate itemsets can be generated with only two

scans of the database. The performance of UP

growth+ was evaluated in comparison with the

state-of-the-art algorithms on different types of

datasets. The experimental results show that UP

growth+ outperforms other algorithms in terms of

both execution time and memory space under

minimum utility threshold is, the more observable its

advantage will be it can achieve the level of about

two orders of magnitude faster than the state-of-the-

art algorithms on dense dataset, and more than one

order of magnitude on sparse datasets.

Keywords—Utility Pattern Growth, UP

Tree, High Utility mining, reducing search

space, Pruning.

I. INTRODUCTION
Data mining is the process of extracting itemsets from

the database that is useful for decision making process

to increase awareness and market analysis. One of the

important tasks is high utility mining which refers to

the discovery of more profitable things. Mining the

high utility itemset from the transaction database when

the utility of an item is greater than or equal to user

specified minimum utility threshold then item is

profitable.
For example, assume the frequency of item A is 10,

item B is 5, and itemset AB is 3. The profit of item A

is 3, B is 2. The utility value of A is 10 * 3 = 30, B is

5* 2= 10, and AB is 3 * 3 + 5 * 2 = 19. If the

minimum utility threshold is 20, A is a high utility

itemset a number of algorithms have been proposed

for high utility itemset mining. The existing algorithm

based on two phase [1], TWU mining [2], UMMI

algorithm [3]. Two phase algorithm mines the high

utility itemset in two phases using the transaction

weighted down closure property in phase I to find the

HTWU (High Transaction Weighted Utility) item. In

Phase II the high utility itemset is mined from first

phase output of HTWU item. The TWU mining

method uses a tree structure to store utility itemsets

information. The exiting UMMI algorithm is

introduced to overcome the shortcoming of two phases

mining, TWU mining which consists of large number

of HTWU itemsets hence it take more execution time.

The High utility itemsets can be mined using two

phase‟s algorithms: maximal phase and utility phase.

Maximal phase mines the maximal transaction

weighted utility (MTWU) item using maximal itemset

property and utility phase discover the high utility

itemset from MTWU item used Mlex tree. In exiting

algorithm have some weakness to mining high utility

itemset: a) Itemset with profit slightly less than the

user defined threshold value is discarded. For example,

if the minimum utility threshold is 40, itemsets with

profit 30 will be pruning the lower threshold utility

itemsets even though the itemset may be important. b).

Quantity information about the high utility itemset is

not reflect that a sales manager is interested. c) Profit

quantity information is also not provided in the

existing algorithm. These shortcomings influence the

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume45 Number 4 – March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 184

ability to select the more profitable and cost saving

products.

II. EXISTING TECHNIQUE

The FP-Growth method adopts a divide and conquers

strategy as follows: compress the database

representing frequent items into a frequent-pattern

tree, but retain the item set association information,

and then divide the compressed database into a set of

condition databases, each associated with one frequent

item, and mine each such databases.

Firstly, database is read and frequent items are found

which are the items are occurring in transactions less

than minimum support. Secondly database is read

again to build FP-tree. After creating the root, every

transaction is read in an ordered way and pattern of

frequent items in the transaction is added to FP-tree

and nodes are connected to frequent items list and

each other. This interconnection makes frequent

pattern search faster avoiding the traversing of the

entire tree. When considering the branch to be added

for the transaction, the count of each and every node

along the common prefix is incremented by 1. Nodes

of same items are interconnected where most left one

is connected to item in frequent items list. If the prefix

of branch to be added does not exists then it is added

as a new branch to root.

After constructing the tree mining proceeds as follows.

Start from each frequent length 1 pattern, construct its

conditional pattern base, then construct its conditional

FP-tree and perform mining recursively on such tree.

The support of a candidate (conditional) item set is

counted traversing the tree thoroughly. The sum of

count values at least frequent item‟s nodes i.e., base

node gives the support value.

Figure 1.1 FP-Growth Example

III. LITERATURE REVIEW

In many existing algorithms that are often unclear and

also inaccurate to find the high utility itemsets from

long transaction itemsets. Fuzzy logic is supportive to

real life datasets that deal with uncertainty as it gives

a flexible method to form a high-level concept of

given problem. Fuzzy logic and data mining together

present a means for generating more conceptual

utility mining at a higher level. Ferdinando et al.

presented a method for finding association rules from

datasets based on fuzzy transforms technique.
Apriori Gen algorithm [6] was used to extract fuzzy

association rules represented in the form of linguistic

terms. A pre-processing phase was used to determine

the optimal fuzzy partitions of quantitative attribute

domains.

Utility Mining covers all aspects of “profitable”

utilities that helps in detecting rare high utility

itemsets from the transaction. High Utility Rare

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume45 Number 4 – March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 185

Itemset Mining (HURI) is very useful in several real-

life datasets. In Jyothi et al.presented a survey of

different approaches and algorithms for mining the

high-utility itemsets and rare itemset mining. Ashish

et al [8] presented a fast and efficient fuzzy ARM

algorithm on large datasets. The algorithm was 8 to

19 times faster than traditional fuzzy ARM on large

standard datasets. In [2], unlike most two-phased

ARM algorithms, the authors presented single itemset

processing as opposite to concurrent itemset

processing at each k no of level, recording some

performance improvements.
In C. Saravanabhavan et al. proposed a tree based

mining high utility itemsets. Firstly, the authors

developed the utility frequent pattern tree structure to

maintain the information of utility itemsets. Next the

pattern growth methodology was used to mine the

utility pattern sets entirely. Two algorithms, UP-

Growth (Utility Pattern Growth) and UP-Tree (Utility

Pattern Tree) are proposed [14] for mining high

utility itemsets. Also, a set of effective strategies are

discussed by SadakMurali et al, proposed for

precisely pruning candidate itemsets.
In Adinarayanareddy.B, was proposed a modified UP-

Growth (IUPG) algorithm for high utility itemset

mining. The authors conclude that IUPG algorithm

performs better than UP-Growth algorithm for

different threshold values and also IUPG algorithm is

highly scalable. Ruchi Patel was proposed a parallel

and distributed method for mining the high utility

patterns from very large transaction databases. The

method also prunes the low utility itemsets from

transactions at the starting level by using downward

closure property.
Koh et al was proposed a modified apriori inverse

algorithm to generate rare itemsets of user interest.

The high utility itemsets as a measure usefulness or

profitability of an itemset [12].These authors paying

attention on the measures used for mining the utility-

based itemset. Utility based measures uses the utilities

of the patterns to reflect the user goals. The authors

makes the official semantic meaning of utility

measures and classify existing measures into one of

the three categories: item level, transaction level and

cell level. Existing system fused framework was

proposed for incorporating utility based measures into

the data mining process via a joined utility function.

One of the most needed areas of the application of

fuzzy set theory is fuzzy rule-based systems [4].

These knowledge extraction tools discovers the

essential associations contained in a database. Fuzzy

techniques improves the understandability of buyer

models. In Casillas et al presented a new approach for

buyer behaviour modelling which is based on fuzzy

association rules (FAS). A behavioural model was

presented which cantered on consumer attitude

towards shopping itemsets. The proposed algorithm

efficiently finds the high utility itemsets and pruning

the lower utility itemset if used defined threshold

value is low.paragraphs must be indented.

.

IV. TERMS AND DEFINITIONS

Let D = {T1, T2… Tn} be a transaction dataset which

contains n transaction itemsets and m distinct items,

i.e. I= {i1, i2… im}. Each transaction itemset is

represented as {i1: p1, i2: p2… iv:pv}, where {i1, i2,

…, iv} is a subset of I, and pu (1≤u≤v) is the

existential probability of item iuin a transaction

itemset. The size of dataset D is the number of

transaction itemsets and is denoted as |D|. An itemset

X = {i1, i2… ik}, which contains k dissimilar items, is

called a k-itemset, and k is the length of the itemset X.

Definition 1: The support value (SV) of an itemset X

in a transaction dataset is defined by number of

transaction itemsets containing X in it.

Definition 2: The expected support value(expSV) of

an itemset X in a transaction dataset is denoted as

expSN(X) and is defined by

Definition 3: Given a dataset D, the minimum

expected support threshold is a predefined percentage

of |D|; correspondingly, the minimum expected

support value (minExpSV) is defined by

anitemset X is called a utility itemset if its expected

support value is not less than the value minExpSV.

Definition 4: The minimum support threshold is a

predefined percentage of |D|; correspondingly, the

minimum support value (minSV) in a dataset D is

defined by

Definition 5: The system mining high utility itemset

and itemsets utility is equal to quantity value

multiplied by profit. For example, item A occurs in

different transaction T1 and T5. If the set of (A, T1) =

{1/L, 0/M, 1/H} and (A, T5) = {0/L, 0/M, 1/H}. If

their item utilities are obtaining by multiplying

quantity with profit, item utilities of T1 and T5 will be

same even though T5 defer a higher quantity value.

The utility is defined as,

Definition 6:The quantity The equation to find the

quantity value of item ip in transaction Tq is denoted

as f (ip,Tq) which is defined as,

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume45 Number 4 – March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 186

Where fq (ip,Tq, j) is the value of region j and

weight (j) is a variable parameter defined by the

region. If a region is low, then the weight should be

low when compared to the region middle and high.

Particular weights are assigned for area low, medium

and high.

Definition 7:The transaction utility can be defined as

the sum of the utilities of item occurring in the

transaction. The equation denoting transaction utility

is

Definition 8: The transaction weighted utilityit is the

sum of transaction utilities of item occurring in the

particular transaction for an item. The equation

denoting transaction weighted utility can be defined

as,

V. PROPOSED SYSTEM

To improve the mining performance and to avoid

scanning original database repeatedly, we use a

compact tree structure, named UP-Tree, and to

maintain the information of transactions and high

utility itemsets. Two strategies are used to minimize

the overestimated utilities stored in the nodes of global

UP-Tree. In following sections, the elements of UP-

Tree are first defined. Next, the two strategies are

introduced.

A. The Elements in UP-Tree

 Each node D consists of D.name, D.count, D.nu,

D.parent, D.hlink and a set of child nodes. D.name is

the item name of the node. D.count is the support

count of that particular node. D.nu is the node utility,

i.e., overestimated utility of the node. D.parent

maintains the parent node of D. D.hlink is a node link

which points to a node whose item name is the same

as D.name. A table named header table is used to

facilitate the traversal of UP-Tree. In header table,

each entry stores an item name, an overestimated

utility, and a link. The link points to the last

occurrence of the node which has the same item as the

entry. By following the links in header table and the

nodes in UP-Tree, the nodes having the same name

can be traversed in a better way.

B. Discarding Global Unpromising Items during

Constructing a Global UP-Tree

The construction of a global UP-Tree can be done

with two scans of the original database. In the first

scan, TU of each transaction is calculated.

simultaneously, TWU of each single item is also

accumulated. By TWDC property, an item and its

supersets are unpromising itemsets if its TWU is less

than the minimum utility threshold. Such an item is

called an unpromising item.

C. Discarding Global Unpromising Items during

Constructing a Global UP-Tree

The construction of a global UP-Tree can be done

with two scans of the original database. In the first

scan, TU of each transaction is calculated.

simultaneously, TWU of each single item is also

accumulated. By TWDC property, an item and its

supersets are unpromising itemsets if its TWU is less

than the minimum utility threshold. Such an item is

called an unpromising item.The tree-based framework

for high utility itemset mining applies the divide-and-

conquer technique in mining processes. Thus, the

search space can be divided into smaller subspaces. By

using strategy DGN, the utilities of the nodes that are

closer to the root of a global UP-Tree are further

decreased. DGN is suitable for the databases

containing more number of long transactions. In other

words, the more items a transaction has, the more

utilities can be removed by DGN. On the other hand,

traditional TWU mining strategy is not suitable for

such databases since the more items a transaction

contains, the higher TWU is.

D. Up Growth Plus Algorithm

UP-Growth is efficient than FP-Growth by using

DLU and DLN to reduce overestimated utilities of

itemsets. However, the overestimated utilities can be

nearer to their actual utilities by eliminating the

calculated utilities that are closer to the actual utilities

of unpromising items. An improved method, named

UP-Growth+, for reducing over estimated utilities

more effectively is introduced. In UP-Growth,

minimum item utility table is used to decrease the

overestimated utilities. In UP-Growth+, minimal node

utilities in each path are used to make estimated

pruning values closer to real utility values of the

pruned items.

After introducing the modification of global UP-Tree,

the processes and two improved strategies of UP-

Growth+, named DNU and DNN are performed.

When a local UPTree is being constructed, minimal

node utilities can also be mined by the same steps of

global UP-Tree. In the mining process, when a path is

retrieved, simultaneously minimal node utility of each

node in the path is also retrieved.

Create Tree (D,)

INPUT: An uncertain dataset D consisting of n

transaction itemsets and a predefined user minimum

expected support threshold .

OUTPUT: A global Tail Node-Tree T.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume45 Number 4 – March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 187

Step 1: Calculate the minimum expected support

value minExpSV, i.e. minExpSV=| D|× ; count the

expected support value and support value of each

transaction item by one scan of dataset.

Transaction utility can be defined as the sum of the

utilities of item occurring in the transaction.

Transaction weighted utility it is the sum of

transaction utilities of item occurring in the particular

transaction for an item.

Step 2: place those items whose expected support

value are not less than minExpSVto a global header

table, and sort the items in the header table according

to the descending order of their support value.

Step 3: Initially set the root node of the Tree T as null.

Step 4: Remove the items that are not in the header

table from each transaction itemset, and sort the

remaining items of each transaction itemset according

to the order of the global header table, and get a sorted

itemsetA.

Step 5: If the length of itemsetA is 0, process the next

transaction itemset; otherwise insert the itemsetA into

the tail node tree T by the following steps:

a)Store the weight probability value of each item in

itemsetA sequentially to a list; save the list to an array

(which is denoted as ProArr); the equivalent series

number of the list in the array is denoted as ID.

b) If there has not been a tail node for the itemsetX,

create a tail node N for this itemset, where

N.Tail_info.lenis the length of itemsetA, and

N.Tail_info.Arr_ind= (ID); otherwise, append the

sequence number ID to N.Tail_info.Arr_ind.

Step 6: Process the next transaction itemset based on

above steps until meet all the transaction from

transaction weight dataset.

E. Mining high utility itemsets from a global tail

node tree

After a tail node tree is constructed, the algorithm

tail node tree can directly mine high utility itemsets

from the tree without additional scan of dataset. The

details of the mining techniques are described below.

The algorithm TN-Mine is similar to the algorithm UP

growth: it creates and processes sub trees recursively.

Mining high utility (T, GH, minExpSV)

INPUT: An FTNT-Tree T, a global header table H,

and a Minimum expected support value minExpSV.

OUTPUT: The high utility itemsets (HUIs).

Step 1: find the high utility items from header table

one by one from the last item by the following steps.

Step 2: choose the current base-itemset(which is

initialized as null); each new base-itemsetis a high

utility itemset.

Step 3: Example consider base item is “Z”LetZ.linksin

the header table H contain k nodes whose item name is

Z; we denote these k nodes as N1, N2, …, Nk; because

item Z is the last one in the header table, all these k

nodes are tail nodes, i.e., each of these nodes contains

a Tail_info.The following sub steps.

a) Create a sub header table subHby scanning the k

base item branches from these k nodes to the root.

b) Suppose the sub header table is zero, go to Step 4.

c): Create sub Tree each and every base item subTree=

CreateSubTree (Z.link, subH).

Mining (subTree, subH, minExpSV).

Step 4: After find the high utility of that base item Z

and remove that item from header table.

Step 5: For each of these k nodes denote as ni≤N≤k),

modify itsTail_infoby the following sub steps:

a) Alter Ni.Tail_info.lenvalues: Ni.Tail_info.len=

Ni.Tail_info.len-1.

b) Move Ni.Tail_infoto the parent of node Ni.

Step 6: Process the next item of the header table H.

Subprograms:CreateSubTree(all_baseitem_link,

subH)

INPUT: A list link which records tree nodes with the

same item name, and a header table subH.

OUTPUT: A high utility itemsets from subT.

Step 1: Initially set the root node of the tree subTas

zero.

Step 2: Process each node Ni in the list link by the

following steps.

Step 3: Get the tail-node-itemsetof node Nifrom X item

sets.

Step 4: Remove those items that are not in the header

table subHfrom itemsetX, and sort the remaining items

in itemsetX according to the order of the header table

subH.

Step 5: If the length of the sorted itemsetki is 0, process

the next node of the list link; otherwise insert the sorted

itemsetX into the FT-Tree subTby the following sub

steps:

a) Get the original sequential ID of each

item of the itemsetX in the corresponding list

ofProArr: item_ind= {d1, d2, dk} where k is the

length of itemsetX

b) Make a copy of N.Tail_info; denote the

copy as nTail_info.

b): Alter nTail_infoas the following:

(1) nTail_info.len= k.

(2) nTail_info. Item_ind= item_ind.

(3) if nTail_info.bpis null, set nTail_info.bp[j] to be

the probability of item Z, i.e.

ProArr[nTail_info.Arr_ind[j]]; otherwise, set

nTail_info.bp[j] to be the product of nTail_info.bp[j]

and the probability of item Z (1 ≤ j ≤ fuzzy_bp.size; the

array ProArris created when the global tree is created.

VI.RESULT

The performance of the proposed algorithm UP

growth plus-Mine. UP Growth is the state-of-the-art

algorithm employing the pattern-growth approach and

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume45 Number 4 – March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 188

FTNT is a new proposed algorithm. So compare UP

growth plus-Mine with the algorithms FUF-Growth,

UP-Mine and Fuzzy based UP growth plus on both

types of datasets: Sparse transaction datasets and

dense transaction datasets. All algorithms were written

in java programming language. The configuration of

the testing platform is as follows: Windows 7 32bit

operating system, 4G Memory, Intel(R) Dual-Core

CPU @ 2.60 GHz.

Table-1 Dataset Characteristics

Table 1 shows the characteristics of 4 datasets used in

our experiments. „|D|‟ represents the total number of

transactions; „|I|‟ represents the total number of

distinct items; „I‟ represents the mean length of all

transaction itemsets; „SD‟ represents the degree of

sparsely or density. The synthetic dataset

T10I4d100kscame from the IBM Data Generator and

the datasets and mushroom were obtained from FIMI

Repository. These four datasets originally do not

provide probability values for each item of each.

Table 2. Comparison algorithm of usingT10I4d100k
Vs No tree created.

Algorithms No of Tree

0.04 0.05 0.06 0.07 0.08 0.09

UF-

Growth +

369 115 39 17 8 4

UP

Growth

410 232 101 52 43 21

FIG.1. COMPARISON OF DIFFERENT
THRESHOLD VALUE WITH TREE

CREATION

Fig 1 and Table 1 Show the total number of tree

nodes generated by UF-Growth and UP,

respectively, on the synthetic datasets.

Table 2. Comparison of different
algorithm using mushroom

algorithm

s

No of Tree

0.0

4

0.0

5

0.0

6

0.0

7

0.0

8

0.0

9

UF-

Growth +

443 345 234 189 132 112

UP

Growth

546 434 367 264 212 187

Fig. 2. Comparison of different threshold value with
tree creation

Fig 2 and Table 2 Show the total number of tree nodes

generated by UF-Growth and UP, respectively, on the

synthetic datasets.

VII.CONCLUSION

The proposed two efficient algorithms named UP-

Growth and UP-Growth+ for mining high utility

itemsets from transaction databases. A data structure

named UP-Tree was used for maintaining the

information of high utility itemsets. PHUIs can be

efficiently constructed from UP-Tree with only two

original database scans. Moreover, we developed

several strategies to reduce the overestimated utility

and improve the performance of utility mining. In the

experiment, both real and synthetic data sets were used

for performance evaluation. Results show that the

strategies efficiently improved performance by

reducing both the search space and the no of

candidates. Moreover, the proposed algorithms, UP-

Growth+, outperform the state-of-the-art algorithms

substantially when databases contain lots of long

transactions or a low minimum utility threshold is

used.

0

50

100

150

200

250

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

N
o

 o
f

T
re

e

Thrreshold

UF-Growth +

UP Growth

0

100

200

300

400

500

600

0.040.050.060.070.080.09

N
o

 o
f

T
re

e

Threshold Value

UF-Growth +

UP Growth

Dataset |D| T |I| Type

T10I4d100k 300,000 33.8 1000 sparse

Mushroom 8,124 23 119 dense

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume45 Number 4 – March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 189

REFERENCES
[1] R.Agrawal, T. Imielinski, and A. Swami,

“Mining association rules between sets of items in large databases,”

in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1993, pp. 207–

216.

[2] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee,

“Efficient tree structures for high utility pattern mining in
incremental databases,” IEEE Trans. Knowl. Data Eng., vol. 21, no.

12, pp. 1708– 1721, Dec. 2009.

[3] F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi,

“ExAnte: A preprocessing method for frequent-pattern mining,”

IEEE Intell. Syst., vol. 20, no. 3, pp. 25–31, May/Jun. 2005.

[4] C. Bucila, J. Gehrke, D. Kifer, and W. M. White, “Dualminer:

A dual-pruning algorithm for itemsetswith constraints,”
DataMining Knowl. Discovery, vol. 7, no. 3, pp. 241–272, 2003.

[5] R. Chan, Q. Yang, and Y. Shen, “Mining high utility itemsets,”

in Proc. Int. Conf. Data Mining, 2003, pp. 19–26.

[6] S. Dawar and V. Goyal, “UP-Hist tree: An efficient data

structure for mining high utility patterns from transaction
databases,” in Proc. 19th Int. Database Eng. Appl. Symp., 2015, pp.

56–61.

[7] P. Fournier-Viger, C.-W. Wu, S. Zida, and V. S. Tseng, “FHM:

Faster high-utility itemset mining using estimated utility

cooccurrence pruning,” in Proc. 21st Int. Symp. Found. Intell. Syst.,

2014, pp. 83–92.

[8] S. Krishnamoorthy, “Pruning strategies for mining high utility

itemsets,” Expert Syst. Appl., vol. 42, no. 5, pp. 2371–2381, 2015.

[9] Y.-C. Li, J.-S.Yeh, and C.-C. Chang, “Isolated items discarding

strategy for discovering high utility itemsets,” Data Knowl.Eng.,
vol. 64, no. 1, pp. 198–217, 2008.

[10] M. Liu and J. Qu, “Mining high utility itemsets without
candidate generation,” in Proc. ACMConf. Inf. Knowl.Manage.,

2012, pp. 55–64.

[11] Y. Shen, Q. Yang, and Z. Zhang, “Objective-oriented utility-

based association mining,” in Proc. IEEE Int. Conf. Data Mining,

2002, pp. 426–433.

[12] U. Yun, H. Ryang, and K. H. Ryu, “High utility itemsetmining

with techniques for reducing overestimated utilities and pruning

candidates,” Expert Syst. Appl., vol. 41, no. 8, pp. 3861–3878,

2014.

http://www.ijettjournal.org/

