
International Journal of Engineering Trends and Technology (IJETT) – Volume-45 Number-7 - March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 325

Compression and Decompression of
Embedded System Codes

E.Silvia Helan1, Mr. P.M.Sandeep2, Mr.V.Suresh Babu3, Mr. M. Varatharaj4

1 Student, Department of ECE, Christ the King Engineering College, Anna University, Coimbatore, Tamilnadu -
641104, India.

2,3,4Assistant Professor, Department of ECE, Christ the King Engineering College, Anna University,
Coimbatore, Tamilnadu - 641104, India.

Abstract-Embedded system depends on three
factors such as performance, power consumption
and cost. Memory is a key factor in such systems.
Code compression is a technique used in embedded
system to reduce the memory usage .It has two
methods such as Bit Mask code compression and
dictionary based code compression. The Bit Mask
code compression is to record mismatched values
and their positions to reduce the greater number of
instruction. In order to reduce the code word
length of high frequency instruction Bit Mask
algorithm is used. In addition, a novel dictionary
selection algorithm was proposed to increase the
instruction match rates. Compression ratio is
placed in embedded system as a key factor for
memory. The compression ratio is a metric used to
evaluate memory compression efficiency
(compressed code size divided by original code
size).So, as a result it can achieve 7.5%
improvement in the compression ratio.
Furthermore, the code compression technique is
used by Bit Mask compression, dictionary based
code compression and Golomb coding.

Keywords--Computer architecture, dictionary-
based code compression (DCC), embedded
systems, separated dictionaries

1. INTRODUCTION

EMBEDDED systems have become an essential
part of everyday life, and are widely used
worldwide. Embedded systems must be cost
effective, and memory occupies a substantial
portion of the entire system. To reduce the system
cost, Wolfe and Chanin [1] first proposed code
compression for compressing the program size in
the early 1990s to conserve the memory usage. The
compression ratio (CR) is a metric used to evaluate
memory compression efficiency, which is defined
as follows:

 CR≡ Compressed Program Size+ Decoding Table

 Original Program Size

To form a microcontroller the input and the output
of the system has been integrated into the chip
processor. The complexity and performance
requirements for embedded programs grow rapidly,
which results in additional memory usage and
power consumption. For all the existing code
compression techniques, compression is used to
encode symbols into bit strings that use fewer bits.
All binary instructions are compressed offline and
decompressed as required during execution. Thus,
to reduce the code size and to provide simple
decompression engine are both challenges when
applying code compression to embedded systems.

Dictionary-based code compression is commonly
used in embedded systems, it can achieve an
efficient CR, possess a relatively Simple decoding
hardware, and provide a higher decompression
ratio. Thus, it is suitable for architectures with
high-bandwidth requirements, such as the very long
instruction word (VLIW) processors. So, therefore
no single compression has efficiently worked for
different kinds of benchmarks. So, here various
steps of code compression are combined into new
algorithm to improve the compression performance
in smaller hardware. Efficient bitmask selection
technique that can create a large set of matching
patterns. Based on the Bit Mask code compression
(BCC) algorithm [3], [4], a small separated
dictionary is proposed to restrict the code word
length of high-frequency instructions, and a novel
dictionary selection algorithm is proposed to
achieve more satisfactory instruction selection,
which in turn may reduce the average ratio.
Furthermore, the separated dictionary architecture
is proposed to improve the performance of the
decompression engine. This architecture has a
better chance to decompress the parallel
instructions than existing single dictionary
decoders.

.

International Journal of Engineering Trends and Technology (IJETT) – Volume-45 Number-7 - March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 326

II. CONVENTIONAL MODE

 In this section, we briefly analyse the
decompression hardware complexity of common
variable-length compression techniques. This
analysis forms the basis of our approach. Inthe
following discussion, we use the term symbol to
refer to a sequence of uncompressed bits and code
to refer to a sequence of uncompressed bits and
code to the compression result produced by the
compression while compression efficiency is direct
and widely used to evaluate compression
techniques, the complexity of decompression
determines the compression ratio.

Fig 1. Decoding the bitstream compression

Bitstream is compressed using dictionary based
code compression and bitmask based code
compression. The compressed bitstream is then
generated using bitmask –based compression .The
placement algorithm is employed to place the
compressed bitstream in the memory for efficient
decompression. During the runtime execution, the
compressed bits are transmitted from the memory
to the decompression engine, and the original
bitstream is generated using decompression engine.

A. BITMASK ALGORITHMS

 Lefurgy et al. Proposed the first dictionary-based
method in 1999. Greedy methods have since been
consistently used toconstruct the LUTs or
dictionaries. The frequency distributionof
instructions or instruction sequences is first
calculated, and the instructions with the highest
frequencies are inserted, inorder, into the LUT until
the LUT is full. The instructions in the LUT are
then encoded as dictionary indices. A tag bit(s) is
used to determine whether the instruction is
compressed by the LUT or not. Although the
dictionary-based methods result in simpler
decompression engines, their CRs are usually less
efficient than those of other entropy-based
compression algorithms. Thus, there have been

many modified versions of dictionary-based
methods proposed to improve the CR. In this
section, we introduce two kinds of BitMask
methods, which are modified versions of the
dictionary-based method. Bitmask is a pattern of
binary values which is combined with some value
using bitwise AND with the result that bit in the
value in positions where the mask is zero and is set
as zero. A bitmask is used to set certain bits using
bitwise OR, or to invert them by using bitwise
exclusive OR. Our compression technique also
ensures that the decompression efficiency remains
the same as compared to the previous techniques.
Fig.1 shows a simplified example. The symbol
sequences of A, B and G have been stored in the
LUT, where G contains a 3-bit programmable field.
For actual code compression, G is a branch
instruction and the programmable field is the
immediate part. Thus, the codeword will contain
the programmed value .The purpose of Bitmask is
used to cancel out some instructions. The symbol
sequence AG and BG are compressible after the
LUT has been created. A tag which is used to
identify the codeword type and the following 3 bits
are the operand parameter to program the
programmable field of G. The last 3 bits are a
bitmask and it is used to cancel out some
instructions. For example, if the bitmask is set to
101, the decompression engine will cancel out
symbol B during decompression. So, the mask is a
data that is used for bitwise operations, particularly
in a bit field.

Fig.2.Bitmask-based method

B. DICTIONARY SELECTION
ALGORITHM

Dictionary based code compression techniques
provide the compression efficiency as well as fast
decompression mechanism. It is used to create the
instruction matches by remembering a few bits
position. The basic idea is to take commonly
occurring instruction sequences by using a
dictionary. The repeating occurrences are replaced

International Journal of Engineering Trends and Technology (IJETT) – Volume-45 Number-7 - March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 327

with a code word so the index of the dictionary
contains a pattern. The compressed program
consists of both code words and uncompressed
data.Fig.3 shows an example of dictionary based
code compression using a simple binary program
.The binary bit consists of ten 8 bit patterns, i.e., a
total of 80 bit. The compressed bitstreams requires
62 b, and the dictionary requires 16 b. In this case,
the CR is 97.5% .The bitstream CR for dictionary
selection is large therefore it does not yield a fast
compression ratio .Therefore, the bitstreams cannot
be compressed using dictionary code compression
but it can be compressed using bitmask selection
which yields a smaller compression ratio.

Fig.3. Bitstream compression using dictionary
selection

III. PROPOSED SYSTEM

A.GOLOMB CODING

Golomb coding is a lossless data compression
technique. It is used to compress the larger sized
data into smaller sized data and still allowing the
original data to be reconstructed back after
decompression. Besides, there is other high
performance lossless compression algorithm.This
algorithm involves higher design complexity and
computational load. In lossy data compression, the
reconstructed data loses some of the information
this result in lower quality data. In Golomb Coding,
the group size, m, defines the code structure. Thus,
choosing the m parameter decides variable length
code structure and it has direct impact on the
compression efficiency. Once the parameter m is
decided, a table chooses to run with zeros until the
code is ended with a one and is created by one.
Determination of the run length is shown as in Fig
3. A run length of m are grouped into AK and given
the same prefix, which is (k – 1) number of ones
followed by a zero. A tail is given to the group
members, which is the binary representation of zero
until (m – 1). The codeword is then produced by
combining the prefix and tail. In Fig 4. The binary
strings are divided into subset of binary strings.

Fig.3: Determination of Run length

Fig .4: Golomb coding example with parameter
m=4

Fig 5. shows the encoded data is produced by
combining the group prefix and tail.

Fig.5:Encoded data with parameter m=4

Fig.6.Golomb encoder algorithm

International Journal of Engineering Trends and Technology (IJETT) – Volume-45 Number-7 - March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 328

The Golomb encoder model can be
described in the flow chart as shown in Fig 6. The
tail count is controlled by the number of ‘0’s in the
input data. If the ‘0’s are read, then the tail count
will be increased proportionally until it reaches the
m parameter, where ‘1’ is generated at its output
data. If the input data is‘1’, the algorithm will
generate a ‘0’ which acts as a divider between the
prefix and the tail, and it output the current tail
count as the encoded string. The algorithm will
then reset the tail count and waits for the next input
data. The Golomb decoder model can be described
in the flow chart as in Fig 7. The system first detect
the values of prefix, if it is ‘1’, then the system will
generate 4 ‘0’s and waits for the next value. If ‘0’ is
detected, then the system will acknowledge that the
end of prefix has been met and first tail bit will be
detected. If the value of the first tail bit is ‘1’, the
system will generate another 2 ‘0’s and waits for
the next tail bit. If the last tail bit is ‘1’, another
extra ‘0’ will be generated and followed by a ‘1’
which will be marked at the end of a subgroup of
original data. The system will then return to the
status of waiting for the next subgroupprefix data.

 Fig.7.Golomb decoder algorithm

A. DECOMPRESSION ENGINE

Fig.8: Decompression Engine

The decompression engine is a hardware
component used to reconfigure a compressed
bitstream, the resourceusage and maximum
operating frequency. A decompression engine has
the buffering circuitry which is used to buffer and
align codes will fetch from the memory, while
decoders performs decompression operation to
generate original codes. The design of a
decompression engine, shown in Fig.3 can easily
handle bit masks and provide fast decompression.
The feature of decompression engine is the
introduction of XOR gate. Thedecompression
engine generates a test data length bitmask, which
is XORed with the dictionary entry. The test data
length bit mask is created by applying the bitmask
on the specified position in the encoding. The
generation of bit mask is done in parallel with
dictionary access, thus reducing additional penalty.
The DCE can decode more than one compressed
data in one cycle. The compressed vector takes
input to decompression engine. Further it checks
the first bit to see whether the data is compressed or
not. If the first bit is “1” (implies uncompressed), it
directly sends the uncompressed data to the output
buffer.On the other, if the first bit is a “0”, then it is
compressed data. Now, there are two possibilities.
The data may be compressed directly using
dictionary selection or may be by using bit masks.

IV. CONCLUSION

By using bitmask based code compression the
compression ratio is reduced. By reducing the
compression ratio golomb coding is used. If the
compression ratio is reduced, then the power and
area gets reduced.

International Journal of Engineering Trends and Technology (IJETT) – Volume-45 Number-7 - March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 329

Fig.9Bitmask selection and dictionary selection compression technique

Fig.10 Decompressed method of Bitmask selection and Dictionary selection

Fig.11: Golomb coding

International Journal of Engineering Trends and Technology (IJETT) – Volume-45 Number-7 - March 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 330

Fig.12: Decompressed Golomb coding

PARAMETERS BITMASK AND
DICTIONARY BASED
COMPRESSION

GOLOMB
CODING

CR 0.508 0.383

POWER 386mW 341mW

AREA 9.079 6.916

Fig.11: Comparison ofthe LUT Tabl

V. REFERENCE

1. Wei Jhih Wang and Chang Hong Lin, “Code
Compression for Embedded Systems Using Separated
Dictionaries,’’ IEEE Transaction on very large scale
integration (VLSI) Systems, Vol. 24, NO. 1, Jan. 2016.

2. Wolfe and A. Chanin, “Executing compressed
programs on an embedded RISC architecture,” in Proc.
25th Annu. Int. Symp.Microarchitecture, Dec. 1992,
pp. 81–91.

3. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge,
“Improving code density using compression
techniques,” in Proc. 30th Annu. ACM/IEEE Int.Symp.
MICRO, Dec. 1997, pp. 194–203.

4. S.-W. Seong and P. Mishra, “A bitmask-based code
compression technique for embedded systems,” in
Proc. IEEE/ACM ICCAD, Nov. 2006, pp. 251–254.

5. S.-W. Seong and P. Mishra, “An efficient code
compression technique using application-aware
bitmask and dictionary selection methods,” in Proc.
DATE, 2007, pp. 1–6.

6. H. Lekatsas and W. Wolf, “SAMC: A code
compression algorithm for embedded processors,”
IEEE Trans. Computer-Aided Design Integr.Circuits
Syst., vol. 18, no. 12, pp. 1689–1701, Dec. 1999.

7. S. Y. Larin and T. M. Conte, “Compiler-driven cached
code compression schemes for embedded ILP
processors,” in Proc. 32nd Annu. Int.
Symp.Microarchitecture, Nov. 1999, pp. 82–91.

8. Y. Xie, W. Wolf, and H. Lekatsas, “Code compression
for VLIW processors using variable-to-fixed coding,”
in Proc. 15th ISSS, 2002, pp. 138–143.

9. H. Lin, Y. Xie, and W. Wolf, “Code compression for
VLIW embedded systems using a self-generating
table,” IEEE Trans. Very Large ScaleIntegr. (VLSI)
Syst., vol. 15, no. 10, pp. 1160–1171, Oct. 2007.

10. C.-W. Lin, C. H. Lin, and W. J. Wang, “A Power-
aware code compression design for RISC/VLIW
architecture,” J. Zhejiang Univ.-Sci.C (Comput.
Electron.), vol. 12, no. 8, pp. 629–637, Aug. 2011.

