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Abstract. 

 

Power system voltage security is improved by 

optimizing reactive power dispatch (ORPD). ORPD 

problem is a multi-constrained, multi-objective 

problem involving both continuous and discrete 

control variables. An efficient optimization 

technique is needed for handling such a challenging 

objective function. Generator bus voltages, 

transformer tap positions and shunt Var 

compensator settings are the design variables in 

optimizing reactive power. ORPD problem is 

attacked by intelligent algorithms in recent years. In 

this work, the newly proposed, Big Bang–Big 

Crunch algorithm is suggested for reactive power  

optimization problem due to its simplicity and better 

convergence behavior. This algorithm is efficient in 

local search but sometimes global searching 

behavior is not sufficient. The global searching 

ability of particle swarm optimization (PSO) is 

adopted to enhance the BB-BC algorithm. The 

resultant is a hybrid BB-BC algorithm, the HBB-BC 

algorithm. The efficiency of the HBB-BC algorithm 

is tested on the standard IEEE-30 bus system for 

ORPD. The results are compared with that of    

basic BB-BC algorithm. The improved results 

encourage implementing this hybrid algorithm for 

different power system optimizations. 
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I. INTRODUCTION 

  
Modern power system networks are facing increased 

load demand and there are risks of stability 

problems. Non-optimized reactive power flow in a 

power system increases the transmission loss and 

threatens the security of the system. In general, 

reactive power dispatch is optimized by real power 

loss minimization. Reactive power optimization is 

done for reasons of power system security [1]-[3]. 

When a power system is under heavily loaded 

conditions, the demand for reactive power is more 

than that for real power. Increased demand for 

reactive power may affect the system security. 

Sufficient reactive power generation should be made 

available for avoiding system instability. 

 

To ensure adequate reactive power generation 

reactive power planning for the future was 

suggested by many researchers [4]. But it requires 

installation of new Var sources and the capital cost. 

This problem can also be dealt with by optimizing 

the reactive power generation from the existing var 

sources. Minimization of reactive power generation 

is equivalent to maximization of reactive reserves 

and it may be useful when additional var is required 

[5]. Var flow in a power system is optimized by 

controlling generator bus voltages, transformer tap 

positions and existing Var sources like SVCs [6]. 

Among these parameters transformer tap positions 

and SVCs settings are   discrete variables and 

generator bus voltages are continuous variables. 

Hence, ORPD is a mixed inter optimization problem 

and it is not so easy to find a global optimal solution. 

 

Conventional optimization algorithms such as linear 

programming [6], nonlinear programming [7] and 

quadratic programming [8] are used for ORPD 

problem. In [9], Newton method is exploited for 

solving ORPD problem. Interior point method is 

used in [10] for optimizing reactive power.  

However, these methods are efficient and have 

certain drawbacks like their inability to handle non-

continuous and non-differentiable objective 

functions, trapping into local optima. Evolutionary 

algorithms are introduced to overcome those 

drawbacks. Some of the evolutionary algorithms 

include simple genetic algorithms [11], evolutionary 

programming [12], particle swarm optimization 

[13]-[14] and differential evolution [2].  
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In this work, the nature inspired BB-BC algorithm is 

proposed for reactive power optimization. This 

algorithm is simple, easy for implementation and 

has less number of parameters. The objectives 

considered are real power loss and voltage deviation. 

 

This remaining content of paper is organized as 

follows: Section 2 describes the problem 

formulation which is related to the objective 

function. Section 3 deals with the hybrid BB-BC 

algorithm and its implementation for ORPD. 

Numerical results are discussed in section 4. Finally, 

conclusions are drawn in section 5. 

 

II. PROBLEM FORMULATION 

The objective of this work is to optimize the reactive 

power flow in a power system by minimizing the 

real power loss and sum of load bus voltage 

deviation. Therefore, an augmented objective 

function is formed with the two objective 

components with suitable weights. 

 

Objective function 

Three different objective functions are considered in 

this work. The design parameter values 

corresponding to the minimum value of the objective 

functions are identified. The objective functions can 

be expressed as: 

 

𝑓1 = 𝑚𝑖𝑛 𝑃𝑙𝑜𝑠𝑠   1  

 

𝑓2 = 𝑚𝑖𝑛 𝑉𝐷  2  

 

𝑓3 = 𝑚𝑖𝑛 𝑤𝑃𝐿+ 1 −𝑤 𝑉𝐷  3  

 

 

Where „w‟ is the weighing factor for real power loss 

andvoltage deviation and is set to 0.7. 

 

Real power loss minimization (PL) 

The total real power of the system can be calculated 

as follows. 

𝑃𝑙𝑜𝑠𝑠 =   𝐺𝑘[𝑉𝑖   
2 +

𝑁𝐿

𝐾=1

𝑉𝑗
2 − 2 𝑉𝑖  𝑉𝑗  𝑐𝑜𝑠𝛿𝑖 − 𝛿𝑗 ]  4  

     

Where, NL is the total number of lines in the system; 

Gk is the conductance of the line „k‟, Vi and Vj are 

the magnitudes of the sending end and receiving end 

voltages of the line;δi and δj are angles of the end 

voltages.  

 

Load bus voltage deviation minimization (VD)  

Bus voltage magnitude should be maintained within 

the allowable range to ensure quality supply of 

electrical power. Voltage profile is improved by 

minimizing the deviation of the load bus voltage 

from the reference value (it is taken as 1.0 p.u. in 

this work). 

𝑉𝐷 =   𝑉𝑖 − 𝑉𝑟𝑒𝑓  

𝑁𝑃𝑄

𝑘=1

 5  

 

Constraints 

 

The minimization problem is subject to the 

followingequality and inequality constraints 

 

Equality constraints 

 

Load Flow Constraints: 

The equality constraints represent the load flow 

equations, which are given below for ith bus: 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 =  𝑉𝑖𝑉𝑗𝑌𝑖𝑗 𝑐𝑜𝑠(𝛿𝑖𝑗

𝑁𝐵

𝑗=1

+ 𝛾𝑗 − 𝛾𝑖) 6  

 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 =  𝑉𝑖𝑉𝑗𝑌𝑖𝑗 𝑠𝑖𝑛(𝛿𝑖𝑗

𝑁𝐵

𝑗=1

+ 𝛾𝑖 − 𝛾𝑗 )            7  

 

Where,PGi ,QGi are the active and reactive power of 

ith generator, PDi , QDi the active and reactive power 

of ith load bus. 

 

Inequality constraints 

 

Generator constraints: 

Generator voltage and reactive power of ith bus lies 

between their upper and lower limits as given below: 

𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥 𝑖 =  1,2, . . . .𝑁𝐺 8  
 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥 𝑖 =  1,2, . . . .𝑁𝐺 9  

 
Where, 𝑉𝐺𝑖

𝑚𝑖𝑛 , 𝑉𝐺𝑖
𝑚𝑎𝑥  are the minimum and maximum 

voltage of ith generating unit and 𝑄𝐺𝑖
𝑚𝑖𝑛  , 𝑄𝐺𝑖

𝑚𝑎𝑥  are 

the minimum and maximum reactive power of 

ithgenerating unit. 

 

Load bus constraints: 

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥 𝑖 =  1,2, . . . .𝑁𝐿 10  
 

Where, 𝑉𝐿𝑖
𝑚𝑖𝑛

, 𝑉𝐿𝑖
𝑚𝑎𝑥  are the minimum and maximum 

value voltage of load bus „i‟.  

 

Transmission line constraints: 

𝑆𝐿𝑖 ≤ 𝑆𝐿𝑖
𝑚𝑎𝑥 𝑖 =  1,2, . . . ,𝑁𝑇𝐿 11  

 

Where, 𝑆𝐿𝑖  is the apparent power flow of ith branch 

and 𝑆𝐿𝑖
𝑚𝑎𝑥  is the maximum apparent power flow limit 

of ith branch.  

 

Transformer taps constraints:  

Transformer tap settings are bounded between upper 

and lower limit as given below: 

 

𝑇𝑃𝑖
𝑚𝑎𝑥 ≤ 𝑇𝑃𝑖 ≤ 𝑇𝑃𝑖

𝑚𝑎𝑥 𝑖 =  1,2, . . . ,𝑁𝑇 12  
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   Where, 𝑇𝑖
𝑚𝑎𝑥

, 𝑇𝑖
𝑚𝑎𝑥  are the minimum and the 

minimum and maximum tap setting limits of ith 

transformer.  

Shunt compensator constraints: 

 
Shunt compensation are restricted by their limits as 

follows: 

𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥 ,      𝑖 = 1,2. . . . , QC  NC  13  
 

Where, 𝑄𝐶𝑖
𝑚𝑖𝑛

, 𝑄𝐶𝑖
𝑚𝑎𝑥  are the minimum and maximum 

VAR injection limits of ith shunt capacitor. 

 

III. BIG BANG – BIG CRUNCH 

ALGORITHM 

 

III.1 The Basic BB-BC Algorithm  

 

A new nature inspired optimization technique which 

has low computational time and high convergence 

speed what is called BB-BC is introduced recently 

[15]-[16]. The algorithm consists of two simple 

phases,  

1. Big Bang phase  

2. Big Crunch phase. 

 

In Big Bang phase, candidate solutions are randomly 

distributed over the search space. The main feature 

of Big Bang phase is that the energy dissipation 

produces disorder and randomness. In   Big Crunch 

phase, the randomly distributed solutions are drawn 

into an order and shrinks to a single solution called 

centre of mass. The Big Bang-Big Crunch 

optimization method generates random solutions in 

the Big Bang phase and shrinks these points to the 

global best point in the Big Crunch phase after a 

number sequential Big Bangs and Big Crunches. 

 

The Big Bang phase is followed by the Big Crunch 

phase. The Big Crunch is a convergence operator 

that has many inputs but only one output, which is 

named as the centre of mass, since the only output 

has been derived by calculating the centre of mass. 

The centre of mass is the best solution among the 

solutions. In this work, the centre of mass is 

calculated according to the following expression. 

𝑋𝐶 =
 

1

𝑓 𝑋𝑖 
𝑁𝑃
𝑖=1 𝑋𝑖

 
1

𝑓 𝑋𝑖 
𝑁𝑃
𝑖=1

 14  

 

Where, Xi is a point within an D-dimensional search 

space, f(Xi) is a fitness function value of this point, 

NP is the population size in Big Bang phase. The 

convergence operator in the Big Crunch phase is 

different from „exaggerated‟ selection since the 

output term may contain additional information 

(new candidate or member having different 

parameters than others) than the participating ones, 

hence differing from the population members. This 

one step convergence is superior compared to 

selecting two members and finding their centre of 

gravity. This method takes the population members 

as a whole in the Big Crunch phase that acts as a 

squeezing or contraction operator; and it, therefore, 

eliminates the necessity for two-by-two combination 

calculations.  

 

After the Big Crunch phase, the algorithm must 

create new agents to be used as the Big Bang of the 

next iteration step. Latter iterations use the 

knowledge gained from the previous ones for 

generation of agents; hence, the convergence of 

such an algorithm is good. In this work, the new 

candidates are generated around the centre of mass 

and knowledge of centre of mass of previous 

iteration is used for better convergence. The 

parameters to be supplied to normal random point 

generator are the centre of mass of the previous step 

and the standard deviation. The deviation term can 

be fixed, but decreasing its value along with the 

elapsed iterations produces better results. 

𝑋𝑖
𝑡+1 = 𝑋𝑐

𝑡+1 +
𝑟𝛼 𝑋𝑖

𝑚𝑎𝑥 − 𝑋𝑖
𝑚𝑖𝑛  

𝑡 + 1
 15  

 

Where, „r‟ is a normal random number, α is a 

parameter limiting the size of the search space, Xmax 

and Xmin are the upper and lower limits, and t is the 

iteration step. Since normally distributed numbers 

can be exceeding ±1, it is necessary to limit the 

population to the prescribed search space boundaries. 

This narrowing down restricts the candidate 

solutions into the search space boundaries.  

 

III.2 The Hybrid HBB-BC Algorithm [17]-[18] 

The BB-BC algorithm is good in exploitation of the 

search space but not so good or some sluggishness is 

there in exploration. If all of the candidates in the 

initial Big Bang are collected in a small area of 

search space, the BB–BC method may not find the 

optimum solution and with a high probability, it 

may be trapped to a small region in the solution 

space.  

 

Large number of agents may be taken to ensure that 

the search space is exploited well, but it results in 

large number offunctional evaluations and 

computational burden. The exploration efficiency of 

the algorithm can be improved by hybridizing it 

with PSO algorithm. PSO is motivated from the 

social behaviour of bird flocking and fish schooling 

which has a population of individuals, called 

particles, that adjust their movements depending on 

both their own experience and the population‟s 

experience [19]. At each iteration, a particle moves 

towards a direction computed from the best visited 

position (particle best) and the best visited position 

of all particles in its neighbourhood (global best). 

The hybrid BB–BC approach similarly not only uses 

the centre of mass but also utilizes the best position 
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of each candidate (𝑋𝑖
𝑏𝑒𝑠𝑡

) and the best global 

position (𝑋𝑔 𝑏𝑒𝑠𝑡
𝑡

 ) to generate a new solution, as: 

 

𝑋𝑖
𝑡+1 =  

∝2 𝑋𝑐
𝑡 +  1 −∝2  ∝3 𝑋𝑔 𝑏𝑒𝑠𝑡

𝑡 +  1 −∝3 𝑋𝑖
𝑏𝑒𝑠𝑡  

+
𝑟𝑎𝑛𝑑 ∝1  𝑋𝑖

𝑚𝑎𝑥 − 𝑋𝑖
𝑚𝑖𝑛  

𝑡 + 1

  16  

 

Where, 𝑋𝑖
𝑡+1

 is the new agent for the next iteration; 

∝1, ∝2, ∝3   are random numbers in the range [0,1] 

that assign importance to the three different best 

solutions of centre of mass, global best of PSO and a 

random number.    

 

The hybrid algorithm also has two phases. The first 

phase, big bang phase has NP number of solutions 

spread over the search space. No change is 

introduced in this stage. The hybrid algorithm is 

similar to the original algorithm. In the second phase, 

centre of mass is identified and PSO is also 

activated. In this phase, in addition to knowing the 

centre of mass, the best of individual agents so far 

and best among the individual bests are considered. 

The new agents for the next iteration is created by 

using (16).  

 

III.3 HBB-BC Applied to ORPF: 

Step 1: Initialize the algorithm parameters like 

population size, maximum number of 

generations, particle best and global best. 

Step 2: Each individual is a vector of the control 

variables. i.e. i.e. Xi= 

[VG1,VG2,…..VGNG,TP1,TP2,…..TPNT,Qc1,Qc2

….QcNC]. NP number of agents are 

generated by respecting the limits of 

control parameters. 

Step 3: Calculate the fitness function values of all 

candidates by running the NR load flow. 

Step 4: Determine the centre of mass which has 

global best fitness using equation (15).  

Step 5: Generate new candidates using the centre of 

mass, particle best and global best by 

adding/subtracting a normal random number 

according to equation (16). 

Step 6: Repeat steps step 2 to step 5 until stopping 

criteria has been achieved. 

IV. RESULTS AND DISCUSSIONS 

The hybrid and basic versions of BB-BC are 

compared to prove the improved performance of the 

hybrid version. The effectiveness of the proposed 

algorithm is tested in the standard IEEE-30 bus 

system [20]. The algorithm is coded in MATLAB 

7.6 Environment and a Core 2 Duo, 2.8 MHz, 2GB 

RAM based PC is for the simulation purpose. 

 

The test system taken has six generating units 

connected to buses 1, 2, 5, 8, 11 and 13. There are 4 

regulating transformers connected between bus 

numbers 6-9, 6-10, 4-12 and 27-28. Two shunt 

compensators are connected in bus numbers 10 and 

24. The system is interconnected by 41 transmission 

lines. Therefore, the dimension of the problem is 12. 

The system is taken under base load condition.  

 

Table 1. Control Variables and their limits. 

Design Variable Limit   

Generator voltage (VG) (0.9-1.1) p.u. 

Tap setting (TP) (0.9 -1.1) p.u. 

MVAR by static compensators 

(QC) 

(0-20) 

MVAR 

 

Three different objective functions are considered 

to optimize the reactive power in the system. In 

case „a‟ only real power loss is minimized, case „b‟ 

considers optimization of voltage profile at the load 

buses and both real power loss and sum of voltage 

deviation are taken for reactive power optimization 

in case „c‟.       

 

The optimal parameters of the algorithm in ORPD 

are: population size; 30, maximum number of 

iterations; 500, ∝1= 0.03 , ∝2= 0.04 , 

∝3= 0.06. These three parameters assign due 

weights to the random number, size of centre of 

mass and size of global best solution respectively 

while deciding the size of new agents for the next 

iteration. It is found that the parameter values are 

the most suitable for the proposed work. 

 

 
Figure 1. Single line diagram of standard IEEE - 

30 bus system. 

 

IV.1Case a: Minimization of Real Power Loss 

The real power transmission loss minimization is the 

major component of reactive power optimization 

objective and it needs more attention. This case 

takes only the real power loss minimization as the 
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objective function. The proposed algorithm is run 

and the optimal value of total line losses is obtained. 

Tuned values of control variables corresponding to 

minimal loss are given in table 2.  

 

Table 2. Optimal parameter values (Case ‘a’) 

S.No 
Parame

ter 

Initial 

value 

Optimal 

value by 

HBB-BC 

Optim

al 

value 

by 

BB-

BC 

1 VG1 1.05 1.1000 1.1000 

2 VG2 1.04 1.0906 1.0957 

3 VG5 1.01 1.0719 1.0760 

4 VG8 1.01 1.0802 1.0782 

5 VG11 1.05 1.0850 1.0495 

6 VG13 1.05 1.0674 1.1000 

7 T6-9 1.078 0.9813 1.0376 

8 T6-10 1.069 1.0999 0.9083 

9 T4-12 1.032 1.0537 0.9749 

10 T27-28 1.068 1.0498 0.9709 

11 Q10 0.0 6.9350 23.520 

12 Q24 0.0 11.3811 7.3395 

 

It is clear from table 3 that HBB-BC algorithm 

performs better than BB-BC in loss optimization. 

Sum of voltage deviation obtained by the hybrid 

algorithm is better. The loss minimization by the 

hybrid algorithm is 4.7754 against 4.804 got by the 

basic version of the algorithm. 

 

Table 3. Minimization of objective terms (Case ‘a’) 

 

For clear understanding of the improvement in 

voltage profile, the p.u. voltage magnitudes of all 

the buses in the system with HBB-BC and BB-BC 

algorithms are compared in figure 2. It is obvious 

from figure 2 that most of the load bus voltages are 

equal to about 1.0 p.u. 

 

 
 

Figure 2. Voltage profile improvement (Case ‘a’) 

The convergence efficiency of the hybrid algorithm 

is depicted in figure 3. Thealgorithm takes 

lessnumber of iterations and the global best results 

are retained. 

 
Figure 3. Convergence of HBB-BC (case ‘a’) 

 
IV.2 Case b: Minimization of Sum of Voltage 

Deviation. 

The objective of minimization of voltage deviation 

is considered in this case. The optimal settings of 

control variables that minimize the sum of voltage 

deviation are minimized by HBB-BC and BB-BC 

algorithms. Table 4 shows the control parameter 

values corresponding to objective function 

minimization using HBB-BC algorithm. 

 

Table 4. Optimal parameter values (Case ‘b’) 

S.No Para 

meter 

Initial 

value 

Optimal 

value 

by 

HBB-

BC 

Optimal 

value 

by BB-

BC 

1 VG1 1.05 0.9918 1.0200 

2 VG2 1.04 1.0584 1.0043 

3 VG5 1.01 1.0138 1.0290 

4 VG8 1.01 0.9794 1.0104 

5 VG11 1.05 1.0814 0.9896 

6 VG13 1.05 1.0564 1.0408 

7 T6-9 1.078 1.0740 0.9970 

8 T6-10 1.069 0.9772 0.9069 

9 T4-12 1.032 1.0042 1.0003 

10 T27-28 1.068 0.9306 0.9458 

11 Q10 0.0 10.7125 7.7001 

12 Q24 0.0 9.1656 10.8798 

 

It is evident that the total voltage deviation 

was originally 1.475. It is reduced to 0.1794 by the 

proposed algorithm but it is 0.203 by the BB-BC 

algorithm. In this case, the hybrid algorithm 

outperforms the simple BB-BC algorithm. However, 

when the objective is only minimization of voltage 
deviation, the loss optimization is not acceptable 
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Paramete

r 

Initial 

value 

Real Power Loss 

Minimization 

 
HBB-BC BB-BC 

Ploss 5.744 4.7754 4.807 

VD 1.4753 0.8262 1.450 
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Table 5. Minimization of objective terms (Case ‘b’) 

 
As the objective is minimization of voltage 

deviation, the voltage at load buses is brought to 

about the nominal value. Figure 4 compares the 

voltages at different load buses after optimization 

by the algorithms. 

 

 
Figure 4. Voltage profile improvement (Case ‘b’) 

 

Convergence capability of the HBB-BC is checked 

in this objective also. The algorithm founds to take 

slightly more number of iterations than what it took 

for loss optimization. But it is sticking to the best 

results remains well.  

 
Figure 5. Convergence of HBB-BC (Case ‘b’) 

 

IV.3 Case c: Minimization of Both Real Power 

Loss and Voltage Deviation. 

Reactive power optimization by either loss 

minimization or VD minimization is not sufficient. 

Unlike the two previous cases, this case considers 

both real power loss and voltage deviation 

optimization simultaneously. This approach is most 

suitable for reactive power optimization as all the 

parameters of reactive power is included. Table 6 

shows the optimal control parameters for 

minimization of both real power loss and voltage 

deviation 

 

Table 6. Optimal parameter values (Case ‘c’) 

S.No Parameter Initial 

value 

Optimal 

value 

by 

HBB-

BC 

Optimal 

value   

by BB-

BC 

1 VG1 1.05 1.0984 1.1000 

2 VG2 1.04 1.0898 1.0989 

3 VG5 1.01 1.0624 1.0740 

4 VG8 1.01 1.0640 1.0809 

5 VG11 1.05 1.0397 0.9759 

6 VG13 1.05 1.0756 1.0436 

7 T6-9 1.078 1.0386 1.0791 

8 T6-10 1.069 1.0385 1.0140 

9 T4-12 1.032 1.0852 1.0958 

10 T27-28 1.068 1.0200 1.0576 

11 Q10 0.0 9.0424 23.2942 

12 Q24 0.0 9.3153 9.0131 

 

The two objective terms of loss and voltage 

deviation are optimized by the algorithm suggested. 

HBB-BC minimizes both the real power loss and 

VD in a better way. It is evident from the table 7 

that the results obtained by the hybrid algorithm are 

really good.  

 

Table 7. Minimization of objective terms (Case ‘c’) 

Paramete

r 

Initial 

value 

Both Real Power Loss 

& Voltage Deviation 

Minimization 

 
HBB-BC BB-BC 

Ploss 5.744 4.8133 4.821 

VD 1.4753 0.5554 0.602 

 

The improvement in voltage profile at the buses of 

the system using HBB-BC algorithm and BB-BC 

algorithm are compared in figure 6. It is clear from 

the diagram that the VD minimization by the HBB-

BC is better than that by the BB-BC algorithm. 

 

 
 

Figure 6. Voltage profile improvement (Case ‘c’) 

 

The algorithm takes the lowest number of iterations 

in this case than in the two previous cases. The 

objectives optimized are the loss and VD. Hence it 
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may be noted that this algorithm retains its strength 

even when two objective terms are considered. The 

algorithm converges to the global best results in an 

augmented multi objective problem. 

 
 

Figure 7. Convergence of HBB-BC (Case ‘c’) 
 

V. CONCLUSIONS 

 

In this paper, the strength of the hybrid version of 

BB-BC algorithm is demonstrated. The simple and 

easy to implement algorithm is enhanced by 

hybridization with PSO and successfully applied for 

power system optimization. The exploration 

capability of the basic BB-BC algorithm is 

improved by combining the exploration quality of 

PSO. The HBB-BC is an enhanced version of BB-

BC and has good exploitation and exploration 

capabilities.  This ensures the strength of the 

proposed algorithm in both local search and global 

search. The numerical results show that the hybrid 

version of the algorithm outperforms its basic form. 

Three different objectives are considered for 

verifying the effectiveness. In all the three 

objectives the performance is better. Further, 

optimization of reactive power by the proposed 

algorithm is highly encouraging. Moreover, the total 

Var requirement suggested by HBB-BC is much 

smaller against the one recommended by the basic 

algorithm. The reduction in Var requirement is 

equivalent to maximization of Var reserves in a 

power system. Therefore, the proposed algorithm in 

addition to reactive power optimization maximizes 

the Var reserves. The algorithm may be used for 

other power system optimization works like 

economic load dispatch, optimal power flow and 

voltage stability improvement.  
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