
International Journal of Engineering Trends and Technology (IJETT) – Volume 46 Number 5 April 2017 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 282 

Denoiser Properties; An analysis 

Chege Simon
1
, Dr. Suman Mishra

2
 

1
M.Tech, ECE, SVCET (JNTUA Affiliated), RVS Nagar, 517127, AP, India

 

2
Professor and HoD, ECE, SVCET (JNTUA Affiliated), RVS Nagar, 517127, AP, India

 

 

Abstract-The main role of a denoising algorithm is 

to remove noise, errors or perturbations from a 

signal. A lot of research has been achieved in this 

area and therefore today’s denoisers can effectively 

remove large amounts of additive noise. A 

compressive sensing (CS) reconstruction algorithm 

scheme seeks to recover a structured signal acquired 

using a relatively small number of randomized 

measurements. Typical CS reconstruction 

algorithms schemes can be cast as iteratively 

estimating a signal from a perturbed observation. 

There is an ongoing research on how to effectively 

employ a generic Denoiser in a CS reconstruction 

algorithm. The AMP reconstruction technique has 

proven to integrate with most denoisers (D-

AMP)and offers an enhanced CS recovery 

performance while operating tens of times faster 

than competing methods. This paper seeks to look 

into an explanation of the exceptional performance 

of D-AMP by analyzing some of its theoretical 

properties and features. 
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I. INTRODUCTION 

A denoiser’s role is designed to estimate a 

signal that is in a class of signals  from 

noisy observations,  where  ~ N (0, I), and 

 denotes the standard deviation of the noise. 

Let  denote a family of denoisers indexed with the 

standard deviation of the noise. At every value of   

,  takes   as the input and returns an 

estimate of . [1] 

To give a proper analysis of the D-AMP, it will 

be required that the denoisers’ family to be (near) 

proper, monotone, and Lipschitz continuous. Since 

most denoisers easily satisfy these first two 

properties, and can be modified to satisfy the third, 

the requirements do not overly restrict the analysis. 

II. DENOISER PROPERTIES 

 

A. Definition 1 

will be called a proper family of denoisers of level 

k  for the class of signals C if  

          (1)  

for every . Note that the expectation is with 

respect to   ~ N (0, I). 

The above definition can be clarified as under, 

consider the following examples: 

Example 1: Let C denote a k-dimensional subspace 

of  (k < n). Also, let (y) be the projection of y 

onto subspace C denoted by PC(y). Then, 

   (2) 

for every  and every . Hence, this family of 

denoisers is proper of level  

Proof: First note that since the projection onto a 

subspace is a linear operator and since , 

we have 

 

    (3) 

Also note that since  , all the eigenvalues of 

 are either zero or one. Furthermore, since the null 

space of P is n - k dimensional, the rank of is k. 

Hence,  has k eigenvalues equal to 1 and the rest 

are zero. Hence  follows a χ
2
 distribution 

with k degrees of freedom and  

. 

Secondly consider a slightly more 

complicated example that has been popular in signal 

processing for the last twenty-five years. Let  

denote the set of k-sparse vectors. 

Example 2: Let  

denote the family of soft-thresholding denoisers, 

then  

   

 (4) 

Proof: For notational simplicity we assume that the 

first k coordinates of  are non-zero and the rest are 

equal to zero. 
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(5) 

Note that  is an increasing 

function of [59]. Therefore, it is straightforward 

to see that 

   

  (6) 

where the last step swaps the lim and E (by the 

dominated convergence theorem). We obtain the 

desired result by combining (5) and (6).  

It is to be noted that the optimal threshold  to use 

within soft-thresholding depends on the sparsity 

of the signal being denoised. One can optimize 

the parameter  for every value of   and obtain 

an optimized family of denoisers. Figure 1 displays 

the level k of the optimized soft-thresholding in 

terms of . Note that for sparse signals 

( small) soft-thresholding is an effective denoiser 

and thus k is small. The previous denoisers both 

utilized prior knowledge about the structure of the 

signal (its dimensionality and its sparsity) in order to 

denoise . When nothing is known about  a 

proper denoiser might be too much to ask for. For 

instance, consider the maximum likelihood 

estimator. 

 

Example 3: If  is the maximum 

likelihood estimate of from , then 

 

  (7) 

So, these families of denoisers are not proper of 

level k for any k < 1. The proof of this statement is 

straightforward and hence has been shown that ([2, 

Ch. 5]) for any denoiser  we have 

 

 (8) 

 

In this example the class of signals which have 

been considered is generic and hence the denoiser 

cannot employ any specific structure in .There are 

occasions when theresearcher wants to deal with 

denoisers that are not proper because of an error/bias 

term that is independent of the noise level. To deal 

with scenarios such as these, the definition near 

proper is introduced as below.

 
Fig. 1. The level k of optimal soft-thresholding 

method as a function of normalized sparsity  

For  sparse signals, soft-thresholding is 

a high performance denoiser. 

B. Definition 2 

is called a near proper family of denoisers of 

levels k  and B  for the class of 

signals C if  

 (9) 

for every .  Note that the expectation is with 

respect to  ~ N(0, I ). 

As in Definition 1, the constants k and B determine 

the quality of the denoiser family. Better denoisers 

have smaller constants. 

Example 4: Let for some 

. For a fixed k, let  denote a denoiser 

that, through oracle information, knows the indices 

of the k largest elements of x and projects the noisy 

observation  onto those coordinates. Then,  

  (10) 

for every  and every  Hence this family of 

denoisers is near proper with   and  

 

Proof: Let  denote the set of indices of the k-largest 

coefficients of . For a vector x, define  in the 

following way,  if  and otherwise 

. Note that is the best k-term 

approximation of . We have 
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   (11) 

Following the same logic as in example 1, it can be 

deduced that . The term  

above is simply the squared ℓ2- norm of the smallest 

 values of . Note that since , we have 

 

In subsequent sections it is assumed that the 

signal in consideration belongs to a class C for 

which there is a proper or near proper family of 

denoisers   . The class and denoiser can be very 

general. For instance, it can be assumed C to be the 

class of natural images and  to denote the BM3D 

algorithm at different noise levels [3] 

C. Definition 3 

A denoiser is called Monotone if for every , its risk 

function 

 

  

     (12) 

is a non-decreasing function of . 

Few remarks regarding monotone denoisers can be 

made as under; 

Remark 1: Monotonicity is a natural property to 

expect from denoisers. Many standard denoisers 

such as soft-thresholding and group soft-

thresholding are monotone if we optimize over the 

threshold parameter. 

Remark 2: If a family of denoisers  is not 

monotone, then it is straightforward to construct a 

new denoiser that outperforms  Here is a simple 

proof.  Suppose that for  we have  

 

Then construct a new denoiser for noise level  in 

the following way: 

  

 (13) 

Where  is independent of y and 

 denotes the expected value with respect 

to . Let . A simple application of 

Jensen’s inequality shows that 

 

 (14) 

Note that since  and  are independent, 

Therefore,  

improves  and does not violate the monotone 

property. Therefore, as is clear from this statement, 

non-monotone denoisers are not desirable in general 

since we can easily improve them.. 

III. STATE EVOLUTION 

A key ingredient in the analysis of D-AMP is 

the state evolution; a series of equations that predict 

the intermediate MSEof AMP algorithms at each 

iteration. Here an introduction of a 

new“deterministic” state-evolution to predict the 

performance ofD-AMP is done. Starting from 

the state evolution generatesa sequence of 

numbers through the following iterations: 

     

 (15) 

Where   and the 

expectation is with respect to . Note that 

the notation  is set to emphasize that 

 may depend on the signal , the under-

determinacy , and the measurement noise. Consider 

the iterations of D-AMP and let  denote its 

estimate at iteration t. The empirical findings show 

that the MSE of D-AMP is predicted accurately by 

the state evolution. The findings are therefore stated 

formally as below; 

A. Finding 1 

If the D-AMP algorithm starts from then for 

large values of m and n, state evolution predicts 

themean square error (MSE) of D-AMP, i.e., 

 

 (16) 

Based on extensive simulations, this findings are 

believed to be  true if the following properties are 

satisfied:  

i. The elements of the matrix A are i.i.d. 

Gaussian (or sub-Gaussian) with mean 

zero and standard deviation . 

ii. The noise  is also i.i.d. Gaussian. 

iii. The denoiser D is Lipchitz continuous. 

A denoiser is said to be L-Lipchitz 
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continuous if for every  we 

have 

 .  

Most advanced image denoisers have no closed 

form expression, thus it is very hard to verify 

whether or not they are Lipschitz continuous. That 

said, every advanced denoisers tested was found to 

closely follow the state evolution equations (Finding 

1), suggesting they are in fact Lipschitz.  

In all the simulations the elements of A are i.i.d. 

Gaussian. The same is true for the elements of . 

Figure 2 compares the state evolution 

predictions of D-AMP (based on the BM3D 

denoising algorithm [39]) with the empirical 

performance of D-AMP and D-IT. As is clear from 

this figure, the state evolution is accurate for D-AMP 

but not for D-IT. The validity of the above findings 

for the following denoising algorithms has been 

checked: (i) BM3D [3], (ii) BLS-GSM [4], (iii) Non-

local means [35], (iv) AMP with soft-wavelet-

thresholding [5], [6].  

In this work, it’s assumed that the state evolution is 

accurate for D-AMP and derive some of the main 

features of D-AMP based on this assumption. 

 

 

Fig.2. The MSE of the intermediate estimate versus 

the iteration count forBM3D-AMP and 

BM3D-IT alongside their predicted state 

evolution. Notice that BM3D-AMP is well 

predicted by the state evolution whereas 

BM3D-IT is not. 

 

IV. ANALYSIS OF D-AMP IN THE 

ABSENCE OF MEASUREMENT 

NOISE 

In this section we consider the noiseless setting 

 and characterize the number of 

measurements D-AMP requires (under the validity 

of the state evolution framework) to recover the 

signal  exactly. We consider monotone denoisers, 

as defined in definition 3. Consider the state 

evolution equation under the noiseless setting

:  

 (17) 

where . Starting with 

 depending on the value of  

there are two conceivable scenarios for the state 

evolution equation: 

i.  as  

ii.  as  

 (18) 

 implies the success of D-AMP 

algorithm, while  implies its failure 

in recovering . The main goal of this section is to 

study the success and failure regions.  

A. Lemma 1 

For monotone denoisers, if for   ,  

then for any  ,  as well. 

Proof: Define . Clearly, 

since , so does . The first claim 

is that for every  (this is where 

D-AMP is initialized) we have 

      

  (19) 

Suppose that this is not true and define  

 

     

 (20) 

Claim that if  , 

then  as . First, it can be concluded 

that . For , 

its known that . 

By using the Monotonicity of the denoiser, then for 

every , 

 
This (through simple induction) implies that for 

every t, . Furthermore according to the 

definition of  and the fact that  , we have 

 

Therefore,  is a decreasing sequence with lower 

bound . Hence,   converges as . The 

last step is to show that . If this is not the 

case, then . But according to the definition 

of  and the supposition that  we have,  

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 46 Number 5 April 2017 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 286 

 

which is a contradiction to  being a fixed point. 

Hence, . Since , then it can be 

concluded that , Thus,  

 

Since  , then  

     
 (21) 

Hence the only fixed point of this equation is also at 

zero and hence . Note that all the 

above argument is based on the assumption that 

 

Note that for very small values of  , it is 

straightforward to see that  as  If 

we combine this result with Lemma 1 then the following 

simple result can be made: For small values of  D-AMP 

fails in recovering  As  increases, after a certain value 

of  D-AMP will successfully recover  from its under-

sampled measurements. Define  

 

     

  (22) 

denotes the minimum number of 

measurements required for the successful recovery 

of . Our goal is to characterize  in terms of 

the performance of the denoising algorithm. 

However, since the number of measurements  

depends on the signal , a more natural question in 

the design of a system is the following: How many 

measurements does D-AMP require to recover every 

signal .  The following result addresses this 

question. 

 

B. Proposition 1 

Suppose that for signal class C the denoiser  is 

proper at level κ. Then 

 

  (23) 

Proof: The proof of this proposition is a simple 

application of the state evolution equation. Similar to 

the proof of Lemma 1 define 

 (24) 

Also for notational simplicity we use the notation   

instead of  in the equation below. 

According to state evolution we have 

 

 

 

   

 (25) 

It is straightforward to see that  

    

  (26) 

Here, if  then as .  

Proposition 1 can be applied to the 

examples of Denoiser properties and derive some 

well-known results, such as the phase transition of 

AMP with the soft-threshold denoiser. If the 

denoiser is only nearly proper, perfect recovery may 

not be possible. However, the same technique to 

bound the recovery error of D-AMP can be 

implemented. 

C. Lemma 1 

Let denote a near proper family of denoiserswith 

levels κ and B, as defined in definition 2. Then, if 

the error of D-AMP is upper bounded by 

 

 (27) 

Proof: The proof of this result is much like the one 

used for proper denoisers. Again define  

 . Using the state 

evolution and the definition of near proper wehave 

 

 

 (28) 

Hence,  

 (29) 

For , the limit of the sequence is as follows, 

 

  (30) 

Note that the proof techniques employed above 

was first developed in [5] and was later employed to 

establish the phase transition of AMP extensions [7]. 

There are some minor differences between this 

work’s derivation and the derivations presented in 

the other works since this work has not adopted the 

mini-max setting. 
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V. NOISE SENSITIVITY OF D-AMP 

In section IV, the performance of D-AMP in the 

noiseless setting where  was considered. 

This section will be devoted to the analysis of 

D-AMP in the presence of the measurement noise. 

Here it is assumed that the denoiser is near proper at 

levels κ and B, i.e., 

 

 

 (31) 

The following result shows that D-AMP is 

robust to the measurement noise. Let  

denote the fixed point of the state evolution 

equation. Since there is measurement 

noise, , i.e., D-AMP will not 

recover  exactly. We define the noise sensitivity of 

D-AMP as 

 

 

 (32) 

The following proposition provides an 

upper bound for the noise sensitivity as a function of 

the number of measurements and the variance of the 

measurement noise. 

A. Proposition 2 

Let denote a near proper family ofdenoisers at 

levels κ and B. Then, for   the noisesensitivity 

of D-AMP satisfies 

 

 (33) 

Proof: Note that  is a fixed point of 

the state evolution equation and hence it satisfies 

   
 (34) 

Where  

. Therefore,  

 

 

 

  

  (35) 

Substituting in B = 0 into the above result gives the 

noise sensitivity for proper denoisers. 

  

 (36) 

There are several interesting features of this 

proposition that we would like to emphasize. 

D. Remark 1  

The bound presented in Proposition 2 is a worst 

case analysis. The bound may be achieved for 

certain signals in C and certain noise variances. 

However, for most signals in C and most noise 

variances D-AMP will perform better than what is 

predicted by the bound. Figure 3 shows the 

performance of BM3D-AMP in terms of the standard 

deviation of the noise. 

The technique employed above was first 

developed in [8]. The result derived in Proposition 2 

can be considered as a generalization of the result of 

[8] to much broader class of denoisers. As an aside, 

upper and lower bounds were recently derived for 

the mini-max noise sensitivity of anyrecovery 

algorithm when the measurement matrix is i.i.d. 

Gaussian and the compressively sampled signal is 

sparse [9]. Note that while the results can be applied 

to sparse signals, they have been derived under 

much more general setting. 

 
Fig. 3. The MSE of BM3D-AMP reconstructions of 

128 × 128 Barbara test image with varying 

amounts of measurement noise at different 

sampling rates (δ). 
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VI. ADDITIONAL MISCELLANEOUS 

PROPERTIES OF D-AMP 

A. Better Denoisers Lead to Better Recovery;  

This intuitive result is a key feature of D-AMP. 

We formalize it below. 

Theorem 1: Let a family of denoisers be a 

betterdenoiser than a family for signal in the 

following sense: 

 (37) 

Also,  let denote the fixed point of 

state evolutionfor denoiser 

then,  

Proof: The proof of this result is straightforward. 

Since, the state evolution of  is uniformly lower 

than , its fixed point is lower as well. 

 

B. D-AMP as a Regularization Technique 

 

Explicit regularization is a popular technique to 

recover signals from an under-sampled set of linear 

measurements [10]. In these approaches a cost 

function, J(x), also known as a regularized, is 

considered on . This function returns large values 

for and returns small values for x ∈C. 

Regularized techniques recover from 

measurements y by setting up and solving the 

following optimization problem: 

 

 (38) 

Since in many cases J (x) is non-convex and non-

differentiable, iterative heuristic methods have been 

proposed for solving the above optimization 

problem. D-AMP provides another heuristic 

approach for solving (38). It has two main 

advantages over the other heuristics:  

a) D-AMP can be analyzed by the state 

evolution theoretically. Hence, we can 

theoretically predict the number of 

measurements required and the noise 

sensitivity of D-AMP.  

b) The performances of most heuristic 

methods depend on their free parameters. 

VII. CONCLUSIONS 

Through extensive testing, it has been 

demonstrated that theapproximate message passing 

(AMP) compressed sensing recovery algorithm can 

be extended to use arbitrary denoisers to great effect. 

Variations of this denoising-based AMP algorithm 

(D-AMP) deliver state-of-the-art compressively 

sampled image recovery performance while 

maintaining a low computational footprint. The 

theoretical results and simulations showthat the 

performance of D-AMP can be predicted accurately 

by state evolution. Finally, can be shown that D-

AMP is extremely robust to measurement noise. D-

AMP represents a plug and play method to recover 

compressively sampled signals of arbitrary class; 

simply choose a denoiser well matched to the signal 

model and plug it in the AMP framework. Since 

designing denoising algorithms that employ 

complicated structures is usually much easier than 

designing recovery algorithms, D-AMP can benefit 

many different application areas. 
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