International Journal of Engineering Trends and Technology (IJETT) — Volume 49 Number 4 July 2017

Implementation of Cryptographic Primitives

Shreya Raj kumar?, Dr. Chester Rebeiro?

Student ECE National Institute of Technology, Tiruchirappalli
Tanjore Main Road, National Highway 67,India

Asst.Prof,Dept. of Computer Science and Engineering, Indian Institute of Technology, Madras

Abstract — The efficiency of cryptographic library
depends on the implementation of multi-precision
algorithms. In this paper, implementation of
algorithms for modular addition, subtraction,
comparison, Extended GCD Algorithm, Montgomery
multiplication, Montgomery Exponentiation is
discussed and the developed library is tested for
correctness and analyzed on various platforms. The
developed library works for very large numbers .1t is
also scalable from 8 bit to 64 bit for a wide range of
platforms that includes embedded controllers and
DSP processors.

Keywords — Chinese Remainder Theorem (CRT),
Cryptography, Functionality testing, Montgomery
Multiplication, Montgomery Exponentiation, Multi-
precision Library, RSA Algorithm..

I. INTRODUCTION

In today’s computer-centric world, cryptography
is most often associated with scrambling plaintext
into cipher text by the process of encryption. Modern
cryptography concerns itself with the following
objectives:

Confidentiality
Integrity
Non-repudiation

Authentication.

In order to realize the above mentioned goals,
implementation of cryptographic primitives requires
integers of extremely large magnitude. This can be
realized by using a multi precision library. There are
already a large number of multi-precision libraries
available. However, one of this proposed library’s
developed feature is that it is compatible with many
systems. It does not use any predefined functions
and there is no dynamic memory allocation. The
advantages of these are the following :

e Memory is limited in embedded systems.

o Embedded systems can run for years which
can cause wastage of memory due to
fragmentation.

e Dynamic memory allocation is slow.

e Dynamic memory allocation makes it
difficult to debug especially with limited
debugging tools that are present on the
embedded system.

Il. PROCEDURE FOR IMPLEMENTATION OF THE
LIBRARY

The multi-precision number is represented as
structure bignumber which contain words of size
specified by word_size. The library is scalable to
any magnitude by just giving the word size
(word_size) and input size (No_of_bits) as
parameters.

The inputs and structure are defined in the
following way.

The example here indicates input of 1024 bit and
word size of 64 bits

* define No_of_bits 1024
* define word_size 64
* define max_digits (No_of_bits/word_size)
* typedef unsigned long word;
* typedef struct

{ word digits[max_digits];

int sign;
} bignumber t;

1. ALGORITHMS

Multi-Precision Addition

procedure ADD(word *r,word *a,word *b) <lnputs
: array of words, performs c=a +b

2:carry — 0

3. for i from 0 to ndo
4: word t « a[i]
5:t« t+carry

6: carry < (t < carry)
7:word | — t +b[i]

8: carry < carry +(I <t)
9: r[i] |

1

ISSN: 2231-5381

http://www.ijettjournal.org

Page 264

International Journal of Engineering Trends and Technology (IJETT) — Volume 49 Number 4 July 2017

Multi-Precision Subtraction

Modular Addition

1: procedure Sub(word *r,word *a,word *b)

2: borrow <0

3: word templ « a[i]

4: word temp2 « bJi]

5: r[i] < (temp1 — temp2 — borrow)

6: if (templ! = temp2) borrow = (templ < temp2)
Tii++

1: procedure ModularAdd(bignumber *r, bignumber
* a, bignumber *b,bignumber *m)

2: ADD(r, a, b)

3: if (COMPARE(r,m) >=0)

4: SUB(r, r,m)

Bignumber Comparison

Modular Subtraction

1: procedure COMPARE(bignumber*a,bignumber*b)

2: word *ap < (a — digits) < digits is an array of
words in the structure a

3: word *bp < (b — digits)

4: for i fromnto O do

5: if (ap[i]! = bpli])

6: return ((ap[i] > bp[i]?1 : —1)

7:return 0

1. procedure ModularSUB(bignumber * r,
bignumber * a, bignumber * b, bignumber * m)

2: 1 f (COMPARE(a, b) <0)

3: SUB(r, b, a)

4: SUB(r,m, r)

5: else

6: SUB(r, a, b)

Montgomery Multiplication:

Extended GCD Algorithm

1: procedure MontMul(bignumber *m, bignumber
*a, bignumber * b) < Performs (a*b)R—1mod m

2.R<0

3: forifrom0to(n—1)do

4:ti < (r0 + aibO)m1 mod b

5:R « (R + aib + tim)/b

6: IfR>>mthenR<-R-m

7: return R

Montgomery Exponentiation:

1: procedure MontExp(bignumber *m, bignumber
*a, bignumber *e) < Performs ae mod m

2: x1 «—MontMul(a, R2 mod m),A<—R mod m
3: forifromnto0do

4: A —MontMul(A,A)

5: If ei = 1 then A—MontMul(A, x1)

6: A—MontMul(A, 1)

7: return A

Given two positive integers x and y, the algorithm
returns a,b and v
such that ax + by = v, where v = gcd(x, y).

l:g=1
2: While x and y are both even : x =x/2,y =y/2,g =
29
3:u=x,v=yA=1B=0,C=0D=1
4: for u is even do the following do
5:u=u/2
6: 1 fAandB are even, then A=A/2, B=B/2,;
otherwise,A = (A +Y)/2,

B =(B — x)/2.
7: for v is even do the f ollowing do
8:v=v/2
9: 1fCand D are even, then C =C/2,D = D/2;
otherwise, C = (C +y)/2,

D =(D - x)/2.
10: 1 fu>=v,thenu=u-vA=A-C,B=B-D
11: otherwise,v=v—-u,C=C—-A,D=D-B.
12: 1fu=0,thena=C, b =D, and return(a, b, g.v);
otherwise go to Step4

RSA was implemented along with CRT in order to
speed up the calculations during decryption.

ISSN: 2231-5381

http://www.ijettjournal.org

Page 265

International Journal of Engineering Trends and Technology (IJETT) — Volume 49 Number 4 July 2017

IV. IMPLEMENTATION AND

RESULTS Functionality testing :

Python scripts were written in order to test the
functionality of the library developed. Python’s
inbuilt bignum library was used to check the
correctness of the developed C library.

First Number is:

12432848055194002703081943631899563108714179450438354999750685331976673395864557
07332274035417903438311241636261874613510395681689963781567561313950691622894596
20764659132269800992075640138530551757000908779654815829106316474330589833456814
456645668556626982214658953971805427335081631318600414005103177582083

Second number is:

15847000253206254881303061265876227741665192055109720085614979737167414915283621
99957226735098937002399597563855714647040793882325215901811087621678420800952922
621592547635669221815185707263709130094927626539814617216079988779255975453392960
108187975800806781722369843449992450158303865486389859399266161165376

The addition result is :

28279848308400257584385004897775796850379371505548075085365665069144088311148179
07289500770516840440710839200117589260551189564015179683378648935629112423847518
82923913895836723173594210864901464766493671433636277550714315352256187378796104
564833644357433763937028797421797877493385496804990273404369338747459

Flgl 'I;esting the developed addition algorithm with
Python’s in-built Multiprecision library.

The first number is :

14766688449681319650152316868293985744871673188552693523386469012910391462359872
34355839413606841510682438108060305009655010995861072959167319357730901568040387
89427724086644147975265209260787246863347543814236780832276965025730954755539511
2671815974043947977746801971603609969270550578737293059288250135010

The Second number is :

15174044980849893173591085040701594769893937167402342190611087283019027541552487
60210972590063517204476917210805105553953021728385866022778065379996696294942588
20260177653980140940072939815915520864592168119792268485907742454228827306355441
67156923464503927316878117515939867549726281795770694380040663288060

The Subtracted Result is :

-1369737613588176120857585335387219619540676984854707283827244038172798839531650
03677538864870283305340867339999907505298752062879975872686133344422360613813854
94131740524531572614254641888983679617825741373836859040268004595165573183080149
054485107490459979339131315544336257580455731217033401320752413153050

Subtraction Success
shreya@shreya-Inspiron-5547:~$ ||

Fig. 2. Testing the developed subtraction algorithm with
Python’s in built Multiprecision library.

The RSA algorithm implemented using the
developed multi-precision library is evaluated on
different platforms and the total time taken by the
RSA algorithm which includes encryption and
decryption is measured in seconds.

Evaluation of RSA on Intel 64-bit System

Input Size | Without CRT With CRT
128 0.000081 0.000019
256 0.000502 0.000304
512 0.001680 0.010923
1024 0.091220 0.077648

Evaluation of RSA on LPC Xpresso 1347

Input Size Without CRT With CRT
128 2.58000 1.224000
256 19.674000 12.958000
512 169.754000 118.123000

We can see that in the above cases, RSA with CRT
outperforms RSA without CRT.

V. CONCLUSION

This paper explains implementation details of
multi-precision arithmetic library which is key for
performing cryptographic operations. The RSA
algorithm is implemented and CRT technique is
used for faster implementation. The library of multi-
precision arithmetic operations can be used in
implementing not only RSA but also various
cryptographic primitives like ECC, Elgamal etc. The
main advantage of the developed library when
compared to other available libraries is that it is
supported by almost all the systems as neither
dynamic memory allocation nor predefined functions
were used.

ACKNOWLEDGMENT

I would like to thank IIT Madras for the facilities
provided.

I would also like to thank my parents for their
support and encouragement.

References

[1] P.C.v.O. Alfred J. Menezes. Handbook of Applied
Cryptography. CRC Press, August

[2] Koltuksuz A., Hisil H. (2005) Crympix: Cryptographic
Multiprecision Library. In: Yolum ., Gungdr T., Gurgen F.,
Ozturan C. (eds) Computer and Information Sciences -
ISCIS 2005. ISCIS 2005. Lecture Notes in Computer
Science, vol 3733. Springer, Berlin, Heidelberg.

[3] Kaoc, C.K.: High Speed RSA Implementation. RSA
Laboratories. TR201 (1994)

[4] Bosselaers, A., Govaerts, R., Vandewalle, J.: A Fast and
Flexible Software Library for Large Integer Arithmetic. In:
Proceedings 15th Symposium on Information Theory in the
Benelux, Louvain-la-Neuve (B), pp. 82-89 (1994)

ISSN: 2231-5381

http://www.ijettjournal.org

Page 266

