
International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 4 July 2017

Implementation of Cryptographic Primitives

Shreya Rajkumar1, Dr. Chester Rebeiro2

Student ECE National Institute of Technology,Tiruchirappalli

Tanjore Main Road, National Highway 67,India
Asst.Prof,Dept. of Computer Science and Engineering, Indian Institute of Technology, Madras

Abstract — The efficiency of cryptographic library

depends on the implementation of multi-precision

algorithms. In this paper, implementation of

algorithms for modular addition, subtraction,

comparison, Extended GCD Algorithm, Montgomery

multiplication, Montgomery Exponentiation is

discussed and the developed library is tested for

correctness and analyzed on various platforms. The

developed library works for very large numbers .It is

also scalable from 8 bit to 64 bit for a wide range of

platforms that includes embedded controllers and

DSP processors.

Keywords — Chinese Remainder Theorem (CRT),

Cryptography, Functionality testing, Montgomery

Multiplication, Montgomery Exponentiation, Multi-

precision Library, RSA Algorithm..

I. INTRODUCTION
In today’s computer-centric world, cryptography

is most often associated with scrambling plaintext

into cipher text by the process of encryption. Modern

cryptography concerns itself with the following

objectives:
• Confidentiality

• Integrity

• Non-repudiation

• Authentication.

In order to realize the above mentioned goals,

implementation of cryptographic primitives requires

integers of extremely large magnitude. This can be

realized by using a multi precision library. There are

already a large number of multi-precision libraries

available. However, one of this proposed library’s

developed feature is that it is compatible with many

systems. It does not use any predefined functions

and there is no dynamic memory allocation. The

advantages of these are the following :

• Memory is limited in embedded systems.
• Embedded systems can run for years which

can cause wastage of memory due to
fragmentation.

• Dynamic memory allocation is slow.
• Dynamic memory allocation makes it

difficult to debug especially with limited
debugging tools that are present on the
embedded system.

II. PROCEDURE FOR IMPLEMENTATION OF THE

LIBRARY
The multi-precision number is represented as
structure bignumber which contain words of size
specified by word_size. The library is scalable to
any magnitude by just giving the word size
(word_size) and input size (No_of_bits) as
parameters.
The inputs and structure are defined in the
following way.
The example here indicates input of 1024 bit and
word size of 64 bits

• define No_of_bits 1024
• define word_size 64
• define max_digits (No_of_bits/word_size)
• typedef unsigned long word;
• typedef struct

{ word digits[max_digits];
int sign;

} bignumber t;

III. ALGORITHMS

Multi-Precision Addition

procedure ADD(word ∗r,word ∗a,word ∗b) ⊲Inputs

: array of words, performs c= a +b
2:carry ← 0

3. for i from 0 to n do

4: word t ← a[i]
5: t ← t +carry
6: carry ← (t < carry)
7: word l ← t +b[i]
8: carry ← carry +(l < t)
9: r[i] ← l

10:i ++

ISSN: 2231-5381 http://www.ijettjournal.org Page 264

International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 4 July 2017

Multi-Precision Subtraction

1: procedure Sub(word *r,word *a,word *b)

2: borrow ← 0

3: word temp1 ← a[i]
4: word temp2 ← b[i]

5: r[i] ← (temp1 − temp2 − borrow)

6: if (temp1! = temp2) borrow = (temp1 < temp2)

7: i + +

Bignumber Comparison

1: procedure COMPARE(bignumber*a,bignumber*b)
2: word *ap ← (a → digits) ⊲ digits is an array of
 words in the structure a
3: word *bp ← (b → digits)

4: for i from n to 0 do
5: if (ap[i]! = bp[i])

6: return ((ap[i] > bp[i])?1 : −1)
7: return 0

Montgomery Multiplication:

1: procedure MontMul(bignumber *m, bignumber
 *a, bignumber * b) ⊲ Performs (a*b)R−1mod m
2: R ← 0

3: for i from 0 to (n − 1) do

4: ti ← (r0 + aib0)m1 mod b

5: R ← (R + aib + tim)/b
6: If R >= m then R ⊲- R – m

7: return R

Montgomery Exponentiation:

1: procedure MontExp(bignumber *m, bignumber
 *a, bignumber *e) ⊲ Performs ae mod m
2: x1 ←MontMul(a, R2 mod m),A←R mod m

3: for i f rom n to 0 do

4: A ←MontMul(A,A)

5: If ei = 1 then A←MontMul(A, x1)

6: A←MontMul(A, 1)

7: return A

 Modular Addition

1: procedure ModularAdd(bignumber *r, bignumber
* a, bignumber *b,bignumber *m)

2: ADD(r, a, b)

3: if (COMPARE(r,m) >= 0)

4: SUB(r, r,m)

 Modular Subtraction

1: procedure ModularSUB(bignumber * r,
 bignumber * a, bignumber * b, bignumber * m)

2: i f (COMPARE(a, b) < 0)

3: SUB(r, b, a)

4: SUB(r,m, r)

5: else

6: SUB(r, a, b)

Extended GCD Algorithm

Given two positive integers x and y, the algorithm
returns a,b and v
such that ax + by = v, where v = gcd(x, y).

1: g = 1

2: While x and y are both even : x = x/2, y = y/2, g =

2g

3: u = x, v = y,A = 1, B = 0, C = 0,D = 1

4: for u is even do the following do

5: u = u/2
6: I f A and B are even, then A = A/2, B = B/2;
otherwise,A = (A + y)/2,

B =(B − x)/2.
7: for v is even do the f ollowing do

8: v = v/2
9: I f C and D are even, then C = C/2,D = D/2;
otherwise, C = (C + y)/2,

D =(D − x)/2.

10: I f u >= v, then u = u − v,A = A − C, B = B − D

11: otherwise, v = v − u, C = C − A, D = D − B.
12: I f u = 0, then a = C, b = D, and return(a, b, g.v);
otherwise go to Step4

RSA was implemented along with CRT in order to
speed up the calculations during decryption.

ISSN: 2231-5381 http://www.ijettjournal.org Page 265

International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 4 July 2017

IV. IMPLEMENTATION AND

RESULTS Functionality testing :
Python scripts were written in order to test the
functionality of the library developed. Python’s

inbuilt bignum library was used to check the

correctness of the developed C library.

Fig. 1. Testing the developed addition algorithm with

Python’s in-built Multiprecision library.

Fig. 2. Testing the developed subtraction algorithm with

Python’s in built Multiprecision library.

 The RSA algorithm implemented using the
developed multi-precision library is evaluated on

different platforms and the total time taken by the

RSA algorithm which includes encryption and

decryption is measured in seconds.

Evaluation of RSA on Intel 64-bit System

 Input Size Without CRT With CRT

 128 0.000081 0.000019
 256 0.000502 0.000304

 512 0.001680 0.010923
 1024 0.091220 0.077648

Evaluation of RSA on LPC Xpresso 1347

Input Size Without CRT With CRT

128 2.58000 1.224000

256 19.674000 12.958000

512 169.754000 118.123000

We can see that in the above cases, RSA with CRT
outperforms RSA without CRT.

V. CONCLUSION

This paper explains implementation details of

multi-precision arithmetic library which is key for

performing cryptographic operations. The RSA

algorithm is implemented and CRT technique is

used for faster implementation. The library of multi-

precision arithmetic operations can be used in

implementing not only RSA but also various

cryptographic primitives like ECC, Elgamal etc. The

main advantage of the developed library when

compared to other available libraries is that it is

supported by almost all the systems as neither

dynamic memory allocation nor predefined functions

were used.

ACKNOWLEDGMENT

I would like to thank IIT Madras for the facilities
provided.
I would also like to thank my parents for their
support and encouragement.

References
[1] P. C. v. O. Alfred J. Menezes. Handbook of Applied

Cryptography. CRC Press, August
[2] Koltuksuz A., Hışıl H. (2005) Crympix: Cryptographic

Multiprecision Library. In: Yolum ., Güngör T., Gürgen F.,
Özturan C. (eds) Computer and Information Sciences -
ISCIS 2005. ISCIS 2005. Lecture Notes in Computer
Science, vol 3733. Springer, Berlin, Heidelberg.

[3] Koc, C.K.: High Speed RSA Implementation. RSA
Laboratories. TR201 (1994)

[4] Bosselaers, A., Govaerts, R., Vandewalle, J.: A Fast and
Flexible Software Library for Large Integer Arithmetic. In:
Proceedings 15th Symposium on Information Theory in the
Benelux, Louvain-la-Neuve (B), pp. 82–89 (1994)

ISSN: 2231-5381 http://www.ijettjournal.org Page 266

