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Abstract — The efficiency of cryptographic library 

depends on the implementation of multi-precision 

algorithms. In this paper, implementation of 

algorithms for modular addition, subtraction, 

comparison, Extended GCD Algorithm, Montgomery 

multiplication, Montgomery Exponentiation is 

discussed and the developed library is tested for 

correctness and analyzed on various platforms. The 

developed library works for very large numbers .It is 

also scalable from 8 bit to 64 bit for a wide range of 

platforms that includes embedded controllers and 

DSP processors. 
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I. INTRODUCTION  
In today’s computer-centric world, cryptography 

is most often associated with scrambling plaintext 

into cipher text by the process of encryption. Modern 

cryptography concerns itself with the following 

objectives:  
• Confidentiality

• Integrity

• Non-repudiation

• Authentication.

 
In order to realize the above mentioned goals, 

implementation of cryptographic primitives requires 

integers of extremely large magnitude. This can be 

realized by using a multi precision library. There are 

already a large number of multi-precision libraries 

available. However, one of this proposed library’s 

developed feature is that it is compatible with many 

systems. It does not use any predefined functions 

and there is no dynamic memory allocation. The 

advantages of these are the following : 

 
• Memory is limited in embedded systems.
• Embedded systems can run for years which 

can cause wastage of memory due to 
fragmentation.

• Dynamic memory allocation is slow.
• Dynamic memory allocation makes it 

difficult to debug especially with limited 
debugging tools that are present on the 
embedded system. 

 
II. PROCEDURE FOR IMPLEMENTATION OF THE  

LIBRARY  
The multi-precision number is represented as 
structure bignumber which contain words of size 
specified by word_size. The library is scalable to 
any magnitude by just giving the word size 
(word_size) and input size (No_of_bits) as 
parameters.  
The inputs and structure are defined in the 
following way.  
The example here indicates input of 1024 bit and 
word size of 64 bits 
 
• define No_of_bits 1024 
• define word_size 64 
• define max_digits (No_of_bits/word_size) 
• typedef unsigned long word; 
• typedef struct  

{ word digits[max_digits]; 
int sign; 

} bignumber t; 
 

 
III. ALGORITHMS 

 

 

 

Multi-Precision Addition  

 

procedure ADD(word ∗r,word ∗a,word ∗b) ⊲Inputs 

: array of words, performs c= a +b  
2:carry ← 0 

3. for i from 0 to n do 

4: word t ← a[i]  
5: t ← t +carry  
6: carry ← (t < carry)  
7: word l ← t +b[i]  
8: carry ← carry +(l < t)  
9: r[i] ← l 

10:i ++ 
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Multi-Precision Subtraction  
 

1: procedure Sub(word *r,word *a,word  *b) 

2: borrow ← 0 

3: word temp1 ← a[i] 
4: word temp2 ← b[i] 

5: r[i] ← (temp1 − temp2 − borrow) 

6: if (temp1! = temp2) borrow = (temp1 < temp2) 

7: i + +  
 
 
 

 

Bignumber Comparison  
 

1: procedure COMPARE(bignumber*a,bignumber*b)  
2: word  *ap ← (a → digits) ⊲ digits is an array of         
                                                words in the structure a 
3: word  *bp ← (b → digits) 

4: for i from n to 0 do  
5: if (ap[i]! = bp[i]) 

6: return ((ap[i] > bp[i])?1 : −1) 
7: return 0  
 
 
 

 

Montgomery Multiplication:  
 
1: procedure MontMul(bignumber *m, bignumber   
    *a, bignumber * b) ⊲ Performs (a*b)R−1mod m 
2: R ← 0 

3: for i from 0 to (n − 1) do 

4: ti ← (r0 + aib0)m1 mod b 

5: R ← (R + aib + tim)/b 
6: If R >= m then R ⊲- R – m 
 

7: return R  
 
 
 

 

Montgomery Exponentiation:  
 
1: procedure MontExp(bignumber *m, bignumber        
     *a, bignumber *e) ⊲ Performs ae mod m 
2: x1 ←MontMul(a, R2 mod m),A←R mod m 

3: for i f rom n to 0 do 

4: A ←MontMul(A,A) 

5: If ei = 1 then A←MontMul(A, x1) 

6: A←MontMul(A, 1) 

7: return A 

  

 
 
 

 

 Modular Addition  
 

1: procedure ModularAdd(bignumber *r, bignumber 
* a, bignumber *b,bignumber *m) 

2: ADD(r, a, b) 

3: if (COMPARE(r,m) >= 0) 

4: SUB(r, r,m)  
 
 
 

 

 

 

  Modular Subtraction  
 

1: procedure ModularSUB(bignumber * r,     
     bignumber * a, bignumber * b, bignumber * m) 

2: i f (COMPARE(a, b) < 0) 

3: SUB(r, b, a) 

4: SUB(r,m, r) 

5: else 

6: SUB(r, a, b) 

  
 
 
 

 

Extended GCD Algorithm  
 

Given two positive integers x and y, the algorithm 
returns a,b and v  
such that ax + by = v, where v = gcd(x, y). 

 

1: g = 1 

2: While x and y are both even : x = x/2, y = y/2, g = 

2g 

3: u = x, v = y,A = 1, B = 0, C = 0,D = 1 

4: for u is even do the following do 

5: u = u/2  
6: I f A and B are even, then A = A/2, B = B/2; 
otherwise,A = (A + y)/2,  

B =(B − x)/2. 
7: for v is even do the f ollowing do 

8: v = v/2  
9: I f C and D are even, then C = C/2,D = D/2; 
otherwise, C = (C + y)/2,  

D =(D − x)/2. 

10: I f u >= v, then u = u − v,A = A − C, B = B − D 

11: otherwise, v = v − u, C = C − A, D = D − B.  
12: I f u = 0, then a = C, b = D, and return(a, b, g.v); 
otherwise go to Step4  
 
 

 

RSA was implemented along with CRT in order to 
speed up the calculations during decryption. 

 
 
 

 

ISSN: 2231-5381 http://www.ijettjournal.org Page 265 



International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 4 July 2017 
 
 
 

 

IV. IMPLEMENTATION AND 

RESULTS Functionality testing :  
Python scripts were written in order to test the 
functionality of the library developed. Python’s 

inbuilt bignum library was used to check the 

correctness of the developed C library.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Testing the developed addition algorithm with 

Python’s in-built Multiprecision library.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Testing the developed subtraction algorithm with 

Python’s in built Multiprecision library.  
 

   The RSA algorithm implemented using the  
developed  multi-precision library is evaluated  on 

different platforms and the total time taken by the 

RSA algorithm which includes encryption and   

decryption is measured in seconds. 
 

 

 
Evaluation of RSA on Intel 64-bit System 

 

           Input Size    Without CRT      With CRT 

            128      0.000081       0.000019 
            256      0.000502       0.000304 

            512      0.001680       0.010923 
           1024      0.091220       0.077648 

 
 
 
 

Evaluation of RSA on LPC Xpresso 1347 

     

Input Size  Without CRT  With CRT 

128  2.58000  1.224000 

256  19.674000  12.958000 

512  169.754000  118.123000 

 

We can see that in the above cases, RSA with CRT 
outperforms RSA without CRT. 

 
V. CONCLUSION 

 
This paper explains implementation details of 

multi-precision arithmetic library which is key for 

performing cryptographic operations. The RSA 

algorithm is implemented and CRT technique is 

used for faster implementation. The library of multi-

precision arithmetic operations can be used in 

implementing not only RSA but also various 

cryptographic primitives like ECC, Elgamal etc. The 

main advantage of the developed library when 

compared to other available libraries is that it is 

supported by almost all the systems as neither 

dynamic memory allocation nor predefined functions 

were used. 
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