
International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 5 July 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 279

Response Time Analysis using Linux Kernel

Completely Fair Scheduler for Data Intensive

Task
Mrs. Sunita Dhotre

1,
Miss. Rucha Shankar Jamale

2
, Dr. Suhas .H Patil

3

1Associate Professor, Department of Computer Engineering, Bharati Vidyapeeth Deemed University, College of Engineering, Pune, India
2M.Tech, Department of Computer Engineering, Bharati Vidyapeeth Deemed University, College of Engineering, Pune, India

3Professor, Department of Computer Engineering, Bharati Vidyapeeth Deemed University, College of Engineering, Pune, India

Abstract--The modern Linux-based systems with

updated operating system are used over a huge range.

They provide numerous facilities and features which

eventually ease our day to day requirements.
However, while providing these variant attributes

Response Time of the system increases which affects

the systems overall performance.

This paper focuses on estimation and analysis of

response time by designing scheduler driven DVFS

scheme using a Data Intensive Task. The proposed

research defined a solution with respect to Operating

System track which is to invoke Dynamic Voltage &

Frequency Scaling (DVFS) techniques in Linux

scheduler Completely Fair Scheduler (CFS) in

collaboration with frequency change which eventually
improves response time and system overall

performance.

Keywords-- Response Time, Completely Fair

Scheduler (CFS), Dynamic Voltage and Frequency

Scaling (DVFS), Governors, Sched.

I. INTRODUCTION

Many supercomputers [1] have Linux as their primary

operating system. Various open source communities
use Linux as their principal operating system.Due to

increasing Linux users, Linux kernels CPU

schedulers are enhanced with better performance and

effectivity.The Linux operating system[2] adapts

different applications requirements such as

multimedia, games, video and audio applications and

the most important internet browsing. For modern

Linux operating systems[28], the CPU frequency and

software complexity keep on increasing which needs a

high amount of energy. The experiences of the user

are therefore significantly affected by the overall

response time which is an unstable factor.
An appropriate balance between response time and

change in frequency is obligatorily required for better

performance and productivity. Overall there should be

a proper balance between modern technology

implementations and its performance. A failure to this

may lead significant degrade in the quality of

experience. The modern operating system executes

several applications simultaneously; energy

management has always remained a challenge. To

address this problem, several conventional Power

Management schemes[3] are developed to provide

efficient battery lifetime by supervising the energy.

The authors R. C. Garcia, J. M. Chung[4] proposed a
scheme for performance estimation in smartphone by

invoking DVFS and CFS separately. DVFS scheme

affects positively in Smartphone’s response time

performance because DVFS works at Central

Processing Unit and change in operational frequency

at CPU indirectly affects access speed and

responsiveness for execution of task. CFS has a

remarkable impact on execution of task at Kernel

level.

The proposed scheme works as a response time

estimator to analyze above effects under different load
conditions. The proposed system works on Optimus G

Smartphone [5]. The working here is mainly explained

with respect to various load situations apparently, run

in the background which helped to analyze Response

Time Estimation and Response Time Performance.

The two most important terms which helped the result

computation are Instantaneous event unit and Time

measurement unit. Hence the proposed system

actually captured the variation in response time during

a change in CPU frequency and applications running

background.

J. Lozi, J. Funston, F. Gaud, V. Qu, and A. Fedorova

explained in there paper[6] performance, bugs in

Linux Scheduler are removed and fixed with the help

of conservative testing techniques and performance

debugging tools. Traditional testing techniques are

ineffective at understanding small but serious kind of

bugs as they are evasive.

Load balancing [29] concept is explained in this paper

with Load balancing is the expensive technique which

requires iterations of runqueues. Constant

modifications of cache data structure, synchronization,
and costly misses are carried out.This leads the

utilization of scheduler at the maximum amount.

Moreover, due to this some of the runqueues remains

unbalanced. The cores become idle which eventually

leads to bad performance.

To tackle this situation, the runqueues should be

balanced in a smart way. To achieve this CFS is used

for balancing the runqueue in a smarter way. CFS

balances the runqueue on the load basis as well as

weight basis.

International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 5 July 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 280

The bugs in the scheduler lead the CPU core [7] to

remain ideal where the threads will not face the

problem of energy wastage. The authors proposed in

the paper that the scheduling task of dividing the CPU

cycles amongst the thread is an unsolved problem.

The complexity of the above problem increases when
more threads are executing simultaneously. The bugs

into the Linux schedulers like waiting threads which

leads to remain thread idle have a big impact on the

runqueues and as a result of the runqueue get stuck

when the CPU goes idle. The authors understand the

problem and presented various tools who catch and fix

the bugs at the same time. The authors identified four

bugs in Linux Kernel CFS scheduler:-the Group

Imbalance Bug, scheduling Group Construction Bug,

the Overhead-on-Wakeup Bug, the Missing

Scheduling Domain Bug.

The authors Sunwook Bae, Hokwon Song, Changwoo

Min, Jeehong Kim, Young Ik Eom [8] established that

for interactivity of processes I/O perfecting and

process scheduling is applied when runtime overhead
is observed at interactive process. By adding topmost

flag set as false at booting time, the authors

customized task_struct.

The observations and literature studied indicate that

CFS is not connected with the CPU frequency

change. CFS can also be linked to the DVFS

algorithm as the response time enhances by a change

in frequency. This leads to the design of a DVFS

Scheme with a scheduler governor where the

responsive time of processes and tasks are minimized.

In this paper [9], authors J. Wei, E. Juarez, M. J.
Garrido, and F. Pescador implemented Energy based

fair queuing (EFQ) scheduling algorithm. EFQ is used

for maximizing the user experience in battery limited

mobile systems. EFQ relies on energy oriented

scheduling algorithms which support balanced energy

usage and effective time restraint compliance. This

paper shows how exactly EFQ is more flexible than

Linux scheduler.

This article improves the working of EFQ and plays a

vital role by maximizing the user experience in battery

oriented mobile devices. The main work here deals
with contributing traditional fair queuing algorithm

regarding energy domain. The analysis is done by the

help of test bench tool [30] which is created based on

Linux scheduler to verify the proposed algorithm here.

Due to this new testbench EFQ properties are

analyzed appropriately with ease and no flaws. Also,

EFQ scheduler here is compared with Linux default

scheduler to show its advantage on enhancing user

experience in battery limited mobile devices.

A fair queuing traditional algorithm is introduced in

the energy domain. The relation between the acquired

time of CPU and energy consumed is explained. Real
time, Batch, and Interactive tasks are considered here.

As per the operating system concepts, energy wastage

is observed when no task is scheduled and the

interactive process and real time process utilize only

half CPU bandwidth. For overcome the energy

problem author used DVFS scheme. All the results are

carried out by using test bench benchmarking tools.

In this paper [10], J. Wei, R. Ren, E. Juarez, and F.

Pescador explained the implementation of Energy

base Fair Queuing (EFQ) Linux based scheduling
algorithm. EFQ is an improvement over traditional

fair queuing algorithm. The main characteristic of

EFQ is proportional power share into the system.

This paper concentrates on improving the

implementation of EFQ algorithm with the help of

testbench Pthread in several ways.

 MiBench an open source benchmark suite is

also used to program the task under test.

Three tasks are programmed here interactive,

batch and real time and these tasks are tested

under EFQ scheduling algorithm.

 Hardware metering measures the power
consumption of selected benchmarks and the

obtained outputs in terms of energy values is

given as an input to Pthread based testbench

 The total power consumption also includes

energy used by I/O operations so that the

overall systems power sharing ability can be

achieved to some greater extent.

 The Linux Nice value table which maps the

priority of the task wise in collaboration with

its Kernels load weight; is redefined with the

precise allocation of power share.
The algorithm provides a robust response time for

different tasks. In addition to the existing

SCHED_FIFO, SCHED_RR, SCHED_NORMAL,

SCHED_OTHER a new scheduling policy is

introduced. The sched_entity structure is modified to

add the EFQ related variables viz. weight, share,

packet size and warp parameters. For tracing the

energy consumption energy measurement, related

variables are added. The nice levels are mapped to the

static global priority by adding difference value of

120. The authors have carried out the work in the
Linux kernel scheduling files fair.c in the Linux

Kernel Directory /kern/sched. The results are gathered

using the performance tool MiBench.

III. LINUX KERNEL COMPLETELY FAIR

Completely Fair Scheduler(CFS) is the default

scheduler of Linux Kernel. Ingo Molnar [32]

introduced CFS in Linux Kernel 2.6.23. The key role

of CFS is to eliminate the unfairness from the system

by allocating a fair amount of CPU to each runnable

process. Completely Fair Scheduler [11] deals with

Ideal multi-tasking CPU which means CPU with

100% power and can execute each task at an equal

speed, in parallel, each at 1/nr_running speed. The

CFS [12] [13] tries to eliminate unfairness from the
system. In a system, CFS keeps track of fair share of

the CPU which is allocated to every process. Hence,

CFS runs an equitable clock at a fraction of real CPU

clock speed.

International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 5 July 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 281

CFS is the default scheduler of Linux kernel[14];

recently all Android smartphone use CFS scheduler.

The ultimate aim of Completely Fair Scheduler is to

offer the fair amount to all the tasks directly

proportional to their weights. In algorithm of CFS

weight of every task is chosen by each tasks nice
value, when the nice value of an individual task is

decreased by one, then the weight of the task is raised

by 1.25 times.

The CFS algorithm uses Red Black Tree[15], in this

tree the tasks are arranged in a tree form from left to

right according to the increasing order of respective

nodes virtual run times. Meanwhile, CFS executes its

task initiating from left most leaf moving towards the

right.

In CFS the ideal, precise multi-tasking CPU means the

CPU which runs multiple processes [16] concurrently

by dividing the power of processor (Fair share of
processing time) among all runnable processes. That

means if a single process is running in the system then

it will get 100% CPU’s power; if there are two

runnable processes, then each process will execute on

50% of processor’s power in this way the multiple

runnable processes can execute simultaneously by

sharing the fair amount of CPU.

CFS uses timeslice and process priority for process

scheduling. Timeslice is defined as the total time

taken by a process to execute and run. The priority

decided by the help of timeslice period. If the process
has big timeslice, it is assigned with the highest

priority. The nice value given to each process

according to user’s perspective determines the priority

of the process.

The time proportion received by the processor is the

differernce between process and runnable processes

niceness.

Following are the scheduling policies supported by

CFS:-

 SCHED_NORMAL /SCHED_OTHER: It is

used for regular tasks.

 SCHED_FIFO: It uses First-In-First- Out

Policy

 SCHED_BATCH: It is used for running the

tasks for longer time without preempting

 SCHED_IDLE: Processes with low priority

use this policy

 SCHED_RR : It is alike to SCHED_FIFO,

but Round Robin scheduling algorithm is

used in this policy.

In CFS, processes (tasks) are given fair processing

time, when time for any task is out of balance as
compared to other task, then those out of balance tasks

should given the processing time to execute, in this

way CFS maintains the Fairness . So, to determine the

balance among multiple tasks CFS introduces the

concept of virtual runtime (vruntime). Virtual runtime

defines the total amount of time provided to given

task. The task which is having small virtual time

means it has higher priority and will schedule first.

CFS maintains fairness for waiting processes by the

help of Red-Black tree which decides the runqueue

processes order. CFS maintains the time order RBTree

[33].

The RB tree is self-balancing binary search tree

supporting following features:

 Each node is black or red.

 Each leaf node is black.

 If the node is red, then is means both the

children of the node are black.

 Every simple path forms a node to leaf node

contains the equal number of back nodes.

The benefits of using RBtree in CFS are :

 It is a self-balancing tree, which means that

there is no path from the root to leaf node is

more than twice as long as any other.

 For searching the RBTree takes O(log n)

time.

Fig 1: Red-black tree

The fig. 1 shows the Red-black tree, and each node in

the tree is a certain task within the system, and virtual

runtime is represented by the key value of particular

task’s node. According to the description of an RB

tree, left most node has smallest key value, which

eventually means that task with minimum key value
has the highest priority with least virtual runtime and

vice versa. Hence, CFS has to take left most tasks for

processing, and once the task is processed, then it is

permanently deleted from the RB tree.

IV. DYNAMIC VOLTAGE AND

FREQUENCY SCALING

The power management scheme focuses on two

aspects Dynamic Power Management (DPM) [17] and

Dynamic Voltage and Frequency Scaling (DVFS)
[18]. The DPM deals with executing the high

workload at a maximum CPU speed while remaining

workload at low power mode. The DVFS deals with

executing processes at a low-performance setting

regarding voltage and frequency.

DVFS techniques [19] are widely applied in

smartphones to reduce power consumption by

changing CPU core frequency and system voltage, and

eventually, this result in variance in response time in

smartphones while executing a precise application.

Many CPU Frequency Scaling Governors exist which

allows the drives to set the target frequency. For the

International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 5 July 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 282

efficient use of CPU dynamic frequency scaling

mechanism is applied. These governors are embedded

in patched Linux kernel System.

Fig 2 gives the overall idea of User level governors

and Kernel level governors [29] [30] [34]. DVFS

schemes include governors like Ondemand governor,
Performance governor, Conservative Governor,

Powersave Governor and Userspace governor.

Fig 2: Governor Types

Ondemand governor [20] is the default governor of

maximum Android-based smartphones. Ondemand

governor was introduced in the Linux Kernel 2.6.10.

Depending on the processor utilization it dynamically

changes the processor frequency. The use of the

processor is checked, and if the value exceeds the

threshold, this governor set the frequency to the

highest available value. If the utilization is less than

the threshold, the governor steps down the frequency.

The range of frequencies can be controlled by the
governor and also the rate of checking the utilization

of the system.

Performance governor sets the frequency to the

highest frequency which is available. This allows the

processor clock speed [21] to be set to maximum thus

allowing maximum performance. No power savings

are achieved which Performance Governor is used, but

it allows changing the frequency.

In Conservative Governor Frequency is dynamically

adjusted based on the processor utilization with a

gradual increase in its value. The frequency of the

processor utilization is checked and if its lies below or
above the utilization thresholds, this governor steps up

or down the frequency to the next available instead

directly going to high or low.

Powersave Governor sets the processor to the lowest

available frequency however a range of frequencies

can be adjusted. The process runs at the slowest

frequency. Therefore it takes the time to go idle.

In Userspace Governor Frequency is set manually in

this governor. It does not dynamically change the

frequency. Compare to all other governors Userspace

is more customizable, it has a most efficient way for
balancing between Performance and power of the

system.

V. RESEARCH APPROACH

Previously many research are done with Energy

efficiency, Energy contingent, Energy fidelity but

considering Operating System domain to deploy

battery constraints and performance are very scarce.
Devices are getting smaller in size [22] with more

amenities; hence it is crucial to maintaining a balance

between battery capacity and different modern

features. The power management schemes were

introduced to challenge battery limitation, and they

have more impact on memory, CPU, Network

Bandwidth and Performance.

DVFS have its own set of different governors.

Governors have a more controlled way for changing

the CPU frequency.

The research aims at designing a scheduler enabled

Dynamic Voltage & Frequency Scaling Scheme [23]
[24]. The existing DVFS is invoked in the kernel

module with the already existing governors.

Fig 3: System Level Implementation

The main motive is to design a scheduler driven

DVFS scheme. To achieve this, already existing

DVFS techniques are loaded into Linux Kernel

module as shown in Fig 3 This aspect helps to reduce

extra power usage by setting lowest value for

processors frequency. The modifications are done in

the header file sched.h and cpufreq.c which adds a

new governor. And by this method a new CFS enabled

DVFS scheme is generated.

The proposed system focuses on estimation of

response time analysis by designing scheduler driven
DVFS scheme. Response Time Analysis of Linux

Kernel Completely Fair Scheduler for Data Intensive

Task is carried out by analysis of frequency change by

the help of DVFS properties invoking in Linux kernel

with the help of Data Intensive Task [25] [26].

To optimize the user experience the Completion time

or Response time of a Process is the main focus of the

work. For the given frequency limits the utility of

CPU Scheduling Algorithm will be explored.

International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 5 July 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 283

The new capacity of the CPU is generated at various

points within CFS including Load Balance, and a call

is to make finally to update the capacity of the CPU

which then converts the new minimum capacity

request into the CPU Frequency.

Frequency analysis is done by the help of Data-
intensive task. Data-intensive tasks are used to

describe applications that are I/O bound or with a need

to process large volumes of data. This kind of claims

most of their processing time to I/O and movement

and manipulation of data. Data-intensive platforms

use parallel computing approach combining multiple

processors and disks to large computing clusters

connected using high-speed communications switches

and networks.

The response time analysis determines the

schedulability of real-time systems on a fixed priority

basis. The main objective of this study is to identify
the points of interest with respect to frequency change

within the Linux kernel for the response-time analysis.

Algorithm: Load Balancing

{ For each CPU cur_cpu} set curr->policy =
SCHED_OTHER

1: for all sd in sched_domains of cur_cpu do

2: calculate the load of runqueue;

3: if sd has idle cores then

4: first_cpu = 1st idle CPU of sd

5: else

6: first_cpu = 1st CPU of sd

7: end if

8: if cur_cpu ≠ first_cpu then

9: continue

10: endif

11: for all sched_group sg in sd do

12: enqueue the tasks in runqueue;

13: for the tasks that are new or waking

up trigger the frequency switch

if (task is new || tasks is wakedup) update

capacity of (cpu(rq))

14: sg.load=average loads of CPUs in

 sg

15: for dequeue remove the task from

the rbtree and update the fair

scheduling status if (task is in sleep

state) update capacity of (cpu(rq))

Raise the target cpu’s Operating

Point Frequency;
16: set the driver target frequency

 using cpu frequency table with new value

17: end for

18: busiest = overloaded sg with the highest

load
(or, if inexistent) imbalanced sg with highest

load

(or, if inexistent) sg with highest load

19: local = sg containing cur_cpu

20: if busiest.load ≤ local.load then

21: continue

22: end if

23: busiest_cpu = pick busiest cpu of sg

24: try to balance load between busiest_cpu and

 cur_cpu

25: if load cannot be balanced then

26: exclude busiest_cpu, goto line 19

27: end if

28: end for

The DVFS methods are invoked through CFS code in

load balancing algorithm [6] [27] in Linux Kernel. For

each scheduling domain (sd), the load balancing

algorithm is executed. Only one core is balances the

load, either its first core of scheduling domain or the

first idle core whose free CPU cycles are used for load

balancing technique. (Lines 2-9). Average scheduling
load is calculated for every scheduling group (sg) of

the scheduling domain given at (Line 10) which

allows picking up of the busiest CPU based on

heuristics. If the load of the busiest CPU is lower than

local group’s load, it is considered as balanced level

(Line 20). Duplication of work is prevented by

executing the load-balancing algorithm on the selected

core for the given sd. Each core runs the load

balancing algorithm based on a periodic clock tick.

Few optimizations are in Linux kernel 2.6.21 Version

onwards which avoids periodic waking up of sleeping
cores. These cores enter a tickles idle state, who

reduces the use of CPU Cycles.

Load balancing is an expensive procedure because it

requires iterating over dozens of runqueues, and

modification of remotely cached data structures,

causing tremendously expensive cache misses and

synchronization. As a result, the scheduler goes to

great lengths to avoid executing the load-balancing

procedure often. At the same time, not executing the

processes may lead to unbalanced runqueues. When
that happens, cores might become idle when there is

work to do, which hurts performance.

To balance the runqueues smartly, accounting for the

fact that the high priority thread does not need a whole

core. To achieve this aim, CFS balances runqueues not

only by weights but also on a metric called load,

which is the combination of thread weight and average

CPU utilization. If a thread does not use much of a

CPU, its load will be decreased accordingly. Fig. 4

explains the Load Balancing technique which

distributes its load among the four CPU cores. The fig

shows Core 4 has maximum load hence it is the
busiest CPU core.

International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 5 July 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 284

Fig 4: Load Balancing

VI. RESULTS

The practical work is carried out on Intel i5 processor

including four cores. 4.4.0-rc2 Linux kernel is

installed on Ubuntu 15.10.

Fig 5: Benchmarking Methodology

Fig. 5 shows the benchmarking method used for a

proposed system where the Data Intensive Task is
executed for 1000 times with the help of shell script

[31] by setting different governors and at the same

time setting different CPU cores. Each governor has a

different CPU utilization as well as diverse Time in

state values. The Transition Table of all the governors

also varies as the CPU cores get changed. The primary

result proves that CFS utilizes and changes the CPU

capacity which represents an average optimization in

response time.

A. Analysis of Data Intensive Task

The Data Intensive Graph as shown in fig 6 proves

that a Data Intensive Task is user oriented and varies

according to respective governors. Average Response

Time of the various governors is also reprented in the

graph. The Graph also indicates that the patched

governor gives minimum Response time. The other

governors vary according to their independent

behavior.

Fig 6: Data Intensive Task Graph

B. Comparison of Governors

Fig 7: Comparison of Governors

The above fig. 7 analyze the in all behavior of DVFS

governors and the Patched Sched governor. The

analysis is carried out by executing the program by

1000 number of groups to visualize actual changes

amongst the governors.

C. Analysis of Frequency and Response Time

In proposed system change in frequency results in a

change in Response time. Performance parameter is

greatly affected by the change in Response time. It

eventually leads to a better performance. Table XI

represents the Frequency and Response time of

Performance and patched governor Sched. Table

verifies that sched governor takes minimum frequency

by 21.47% and minimum Response time by 80.33%
compared to Performance governor. The exact

difference between the response times of governors is

0.31309 sec and difference between frequencies is

1565775 kHz.

International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 5 July 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 285

Governors Frequency(khz) Response

Time(sec)

Performance 1993934 1.59251

Sched 428159 1.27942

Difference 1565775 0.31309

Table I: Frequency and Response Time of Performance

and Sched governors

Fig. 8 depicts the Frequency vs. Response time graph.

The two bars represent frequency and response time

values of Performance and Sched governor

respectively.

Fig. 8: Frequency vs. Response Time

VII. CONCLUSION

Modern Linux based devices have several advanced

inbuilt features due to this, devices possess
performance and battery limitation problem. The

proposed research defined a solution with respect to

Operating System track which is to invoke DVFS

techniques in Linux scheduler CFS in collaboration

with frequency change which eventually improves the

performance and battery capacity. This aspect directly

works on kernel level approach. This is a primary

work which collaborates DVFS scheme with CPU

frequency change

A new patched kernel is developed by adding a new

patch to the CFS algorithm in load balancing session.
The Sched governor is created here; the secondary

analysis of the research involves deep analysis of

Sched governor with respect to comparison of other

five governors. For superior analysis graphical

representation of Performance governor and sched

governor is shown in the results. Considering the

hardware complexity of Intel x86 i5 processor with

Ubuntu 15.10 operating system as per experimental

setup and excluding the daemon processes the average

response time of sched governor is decreased by

60.69%; with respect to the highest computed average
response time of Ondemand governor which is

100%.The Result Analysis proves that Sched

consumes minimum response time compared to other

governors which is 1.27942 sec and the average

response time of sched governors compared to other

governors is decreased by 60.69%.

VIII. FUTURE SCOPE

The proposed work contributes in implementing a

DVFS driven scheme through CFS scheduler. This

work can further be implemented on various hardware

resources and processors. The Linux Schedulers can

also be further developed by comprehensive literature,

performance tuning and invoking new ideas to the

architecture.

Response Time Analysis using Linux Kernel

Completely Fair Scheduler for Data Intensive Task
have various applications in wireless technology and

modern operating system devices like smartphones,

Gaming.

ACKNOWLEDGMENT

The authors would like to thank all the staff members

of Bharati Vidyapeeth College of Engineering for

their valuable inputs and support.

REFERENCES

[1] A. Gara et al., "Overview of the Blue Gene/L system

architecture," in IBM Journal of Research and

Development, vol. 49, no. 2.3, pp. 195-212, March 2005.

[2] Barabanov, Michael. A linux-based real-time operating

system. Diss. New Mexico Institute of Mining and

Technology, 1997.

[3] Le Sueur, Etienne, and Gernot Heiser. "Dynamic voltage

and frequency scaling: The laws of diminishing

returns." Proceedings of the 2010 international

conference on Power aware computing and systems.

2010.

[4] R. C. Garcia, J. M. Chung, S. W. Jo, T. Ha, and T.

Kyong, “Response time performance estimation in

smartphones applying dynamic voltage & frequency

scaling and completely fair scheduler,” Proc. Int. Symp.

Consum. Electron. ISCE, vol. 2, no. 2, pp. 1–2, 2014.

[5] F. Lin and W. Ye, "Operating System Battle in the

Ecosystem of Smartphone Industry," 2009 International

Symposium on Information Engineering and Electronic

Commerce, Ternopil, 2009, pp. 617-621.

[6] Lozi, Jean-Pierre, et al. "The Linux scheduler: a decade

of wasted cores." Proceedings of the Eleventh European

Conference on Computer Systems. ACM, 2016.

[7] Karande, Poonam, S. P. Dhotre, and Suhas Patil. "Task

management for heterogeneous multi-core

scheduling." Int. J. Comput. Sci. Inf. Technol 5.1 (2014):

636-639.

[8] Sunwook Bae, Hokwon Song, Changwoo Min, Jeehong

Kim, Young Ik Eom, “Eimos: Enhancing Interactivity in

Mobile Operating System”, Springer, “12
th
 International

Conference on Computational Science and its

Applications – ICCSA 2012 Salvador de Bahia,

Brazil,pp. 238-247, June 2012

[9] J. Wei, E. Juarez, M. J. Garrido, and F. Pescador,

“Maximizing the user experience with energy-based fair

sharing in battery limited mobile systems,” IEEE Trans.

Consum. Electron., vol. 59, no. 3, pp. 690–698, 2013.

[10] J. Wei, R. Ren, E. Juarez, and F. Pescador, “A linux

implementation of the energy-based fair queuing

scheduling algorithm for battery-limited mobile

systems,” IEEE Trans. Consum. Electron., vol. 60, no. 2,

pp. 267–275, 2014.

[11] C. S. Wong, I. K. T. Tan, R. D. Kumari, J. W. Lam, and

W. Fun, “Fairness and interactive performance of O(1)

1.59251
1.27942

0

0.5

1

1.5

2

1993934 428159

Frequency

R
es

p
o

n
se

 T
im

e
 (

Se
c)

Frequency in kHz

International Journal of Engineering Trends and Technology (IJETT) – Volume 49 Number 5 July 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 286

and CFS Linux kernel schedulers,” Proc. - Int. Symp. Inf.

Technol. 2008, ITSim, vol. 3, no. 1, 2008.

[12] Kabugade, Rohan R., S. S. Dhotre, and S. H. Patil. "A

Modified O (1) Algorithm for Real Time Task in

Operating System."

[13] Kabugade, Rohan R., S. S. Dhotre, and S. H. Patil. "A

Study of Modified O (1) Algorithm for Real Time Task

in Operating System." Sinhgad Institute of Management

and Computer Application NCI2TM (2014).

[14] Pabla, Chandandeep Singh. "Completely fair

scheduler." Linux Journal 2009.184 (2009).

[15] P. Pawar, S. S. Dhotre, and S. Patil, “CFS for

Addressing CPU Resources in Multi-Core Processors

with AA Tree,” Int. J. Comput. Sci. Inf. Technol., vol. 5,

no. 1, pp. 913–917, 2014.

[16] Kumar, Avinesh. "Multiprocessing with the completely

fair scheduler." IBM developerWorks (2008).

[17] Le Sueur, Etienne, and Gernot Heiser. "Dynamic voltage

and frequency scaling: The laws of diminishing

returns." Proceedings of the 2010 international

conference on Power aware computing and systems.

2010.

[18] Choi, Kihwan, Ramakrishna Soma, and Massoud

Pedram. "Dynamic voltage and frequency scaling based

on workload decomposition." Proceedings of the 2004

international symposium on Low power electronics and

design. ACM, 2004.

[19] Dhiman, Gaurav, and Tajana Simunic Rosing. "Dynamic

voltage frequency scaling for multi-tasking systems

using online learning." Low Power Electronics and

Design (ISLPED), 2007 ACM/IEEE International

Symposium on. IEEE, 2007.

[20] Pallipadi, Venkatesh, and Alexey Starikovskiy. "The

ondemand governor." Proceedings of the Linux

Symposium. Vol. 2. No. 00216. sn, 2006.

[21] Noble, James L., et al. "Adjusting clock frequency and

voltage supplied to a processor in a computer system."

U.S. Patent No. 5,760,636. 2 Jun. 1998.

[22] Cuervo, Eduardo, et al. "MAUI: making smartphones

last longer with code offload." Proceedings of the 8th

international conference on Mobile systems,

applications, and services. ACM, 2010.

[23] R. Shankar, S. Dhotre, and P. Tanaji, “A Survey on

Response Time Analysis Using Linux Kernel

Completely Fair Scheduler for Data Intensive Tasks,”

vol. 9, no. 44, pp. 351–358, 2016.

[24] P. Tanaji, S. Dhotre, and R. Shankar, “A Survey on

Fairness and Performance Analysis of Completely Fair

Scheduler in Linux Kernel,” vol. 9, no. 44, pp. 495–502,

2016.

[25] P. T. Patil and P. S. Dhotre, “Response Time Analysis

Using Linux Completely Fair Scheduler for Compute-

Intensive Tasks,” vol. 5, no. 2, pp. 377–380, 2017.

[26] P. T. Patil and P. S. Dhotre, “Response Time Analysis

Using Linux Completely Fair Scheduler for Compute-

Intensive Tasks,” vol. 5, no. 2, pp. 377–380, 2017.

[27] Shirazi, Behrooz A., Krishna M. Kavi, and Ali R.

Hurson. Scheduling and load balancing in parallel and

distributed systems. IEEE Computer Society Press, 1995.

[28] R. Love, "Linux Kernel Development," 2nd Edition,

Noval Press, ISBN 0-672-32720-1, 2005.

[29] Silberschatz, Abraham, et al. Operating system concepts.

Vol. 4. Reading: Addison-wesley, 1998.

[30] Ezolt, Phillip G. Optimizing Linux (R) Performance: A

Hands-On Guide to Linux (R) Performance Tools.

Prentice Hall PTR, 2005.

[31] Bovet, Daniel P., and Marco Cesati. Understanding the

Linux Kernel: from I/O ports to process management.

“O’Reilly Media, Inc.", 2005

[32] Elboth, David. The Linux Book. Prentice Hall PTR, 2001

[33] Sobell, Mark G. A practical guide to Linux commands,

editors, and shell programming. Prentice Hall

Professional Technical Reference, 2005.

[34] I.Molnar, "Modular Scheduler Core and Completely Fair

Scheduler [CFS]," http://lwn.net/Articles/230501.

[35] Red-black trees,

“http://www.eli.sdsu.edu/courses/fall95/cs660/notes/Red

BlackTree/RedBlack.html#RFToC1” October 1995.

[36] D.Brodowski, "CPUFreq Governors,"

https://www.kernel.org/doc/Documentation/cpu-

freq/governors.txt, Nov. 2013.

