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Abstract — fMRI is a valuable experimental and 

diagnostic tool for assessing the human body 

especially the brain. It has emerged as a successful 

tool in the investigation of cognitive functions. fMRI 

data was traditionally analysed with the univariate 

method, the popular one being Statistical 

Parametric Mapping based on the General Linear 

Model. But lately MVPA has been used to perform 

multivariate analysis of fMRI data. The multivariate 

approach originates from a field called as Machine 

Learning which is a branch of Artificial Intelligence. 
The Multivariate approaches have several 

advantages over the univariate approach, in that the 

Artificial Neural Networks (ANN) have 

outperformed some of the other classifiers such as 

Gaussian Naive Bayes, ICA and others.  In this 

paper, an attempt is made to survey MVPA analysis 

of brain fMRI data using Artificial Neural Networks.  
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I. INTRODUCTION  

Magnetic Resonance Imaging (MRI) is a valuable 

experimental and diagnostic tool for assessing the 

human body, especially the brain. It is a non-

aggressive, non-radioactive, pain free and a non-

invasive technique for studying brain activity and is 

quite popular among researchers and neuroscientists 

[1]. MRI is an extremely versatile imaging modality 

that can be used to study both the structure and 

function of the brain. Both structural and functional 

MRI images are acquired using the same scanner. 

Structural MRI helps in the study of brain structure 
whereas functional MRI (fMRI) is used in the study 

of cognitive and affective processes of the brain. 

fMRI has emerged as one of the most successful tool 

in the investigation of cognitive functions [2]. fMRI 

provides adequate spatial and temporal resolutions to 

measure the amplitude, location and timing of brain 

activity [3]. During the course of an fMRI 

experiment a series of brain images are acquired 

while the subject performs a set of tasks. The 

changes in the measured signal between individual 

images are used to make inferences regarding task 
related activations in the brain. The most common 

approach towards fMRI uses the Blood Oxygenation 

Level Dependent (BOLD) contrast. BOLD fMRI 

measures the ratio of oxygenated to deoxygenated 

haemoglobin in the blood. BOLD fMRI doesn‟t 

measure neuronal activity directly; instead it 

measures the metabolic demands of active neurons. 

fMRI data analysis is a massive data problem. Also, 

the relatively small changes in image intensity and 

existence of artifacts presents a challenge for 

accurately mapping task-related brain regions [4]. 

Several methods of fMRI data analysis have been 

reported in literature. The fMRI data analysis either 

uses the massive univariate approach or the 

multivariate approach. 

II.  UNIVARIATE VS MULTIVARIATE 

ANALYSIS 

The univariate analysis is a single-voxel 

approach where each voxel is treated as a separate 

entity and statistical analysis is performed on that 

voxel. Statistical Parametric Mapping (SPM) based 

on the General Linear Model (GLM) performs 

voxel-by-voxel analysis which is massively 

univariate. It assumes a simple parametric linear 

model for signals with a specific noise structure and 

uses voxel-based linear regression analysis. It is 

widely used in the fMRI analysis mainly because of 
its simplicity of approach in principle and 

application. Usually in a SPM analysis linear 

convolution of an assumed hemodynamic response 

function (HRF) and the deterministic stimulus 

timing function is performed to construct reference 

functions. Certain factors like the modelling 

assumptions and the deterministic character assigned 

to the stimulus timing function could be too 

restrictive to capture the broad range of possible 

brain activation patterns in space and time and 

across subjects. Due to spatial coherence and 

temporal autocorrelation between brain voxels, a 
multivariate approach may be more suitable for 

fMRI analysis than the univariate approach [3]. The 

multivariate approach evaluates the covariance of 

the activated voxels across the regions of the brain. 

These results are easier to interpret as a signature of 

neural networks. On the other hand, univariate 

approaches are not capable of addressing the 

functional connectivity in the brain. The univariate 

approaches are forced to use more stringent and 

conservative, corrections for voxel-wise multiple 

comparisons. Hence the multivariate approach has a 
greater statistical power compared to univariate 

methods [5]. In MVPA the goal is to determine the 

model parameters that allow for the most accurate 

prediction of new observations. It seeks to create 

rules that can be used to categorize new observations. 
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In contrast, the GLM seeks to determine the model 

parameters that best fit the data at hand. GLM aims 

to see what to do with the data now, but MVPA sees 

what to do with the data now and in the future. 

MVPA has its own benefits. MVPA has increased 

sensitivity in detecting the presence of a particular 
mental representation in the brain. This makes the 

MVPA methods more feasible to measure the 

presence/ absence of cognitive states based on only a 

few seconds‟ worth of brain activity. Along with this 

the MVPA methods can be used to characterize how 

these cognitive states are represented in the brain [6]. 

It also focuses on the analysis and comparison of 

distributed patterns of activity hence helps to detect 

difference between conditions with higher sensitivity 

than the univariate analysis [7].  

 
III.  MULTI-VOXEL PATTERN ANALYSIS 

(MVPA) 

The application of machine learning methods to 

fMRI data is referred to as Multi Voxel Pattern 

Analysis (MVPA). MVPA tools are referred to as 

classifiers or learning machines. MVPA focuses on 

multiple voxels instead of single voxels, and uses 
pattern classification algorithms on multiple voxels 

in order to decode the patterns of activity. In this 

approach, data from individual voxels within a 

region of interest are jointly analysed [7]. 

 

 
Fig 1: Steps involved in Multi Voxel Pattern Analysis 

 

The steps involved in performing MVPA (Fig 1) 

includes the following: defining features and classes, 
feature selection, choosing a classifier, training and 

testing the classifier and examining results. For 

defining what information to be used as features 

there are many possible choices like the raw fMRI 

data over space and time, averaged fMRI data over a 

block, Beta values from a GLM analysis or average 

of several voxels in an ROI. The choice of the class 

labels depends upon the research question. In fMRI 

the number of features is usually larger than the 

number of observations. Hence it is beneficial to 

reduce the number of features through feature 
selection. This could involve using only voxels from 

a particular ROI or by dimensionality reduction 

technique such as SVD (Singular Value 

Decomposition) or PCA (Principle Component 

Analysis) or meta-analysis data.  In literature, there 

are methods like Principal Feature Analysis [8], 

Gray Level Co-occurrence Matrix (GLCM) [1] 

which have been used for feature selection. The next 

step is selection of a suitable classifier. Classifiers 

can be either linear or non-linear. Most MVPA 

studies have used linear classifiers, including 

Correlation-based classifiers, Neural Networks 
without a hidden layer, Linear Discriminant 

Analysis, Linear Support Vector Machines (SVMs), 

and Gaussian Naive Bayes classifiers. Other MVPA 

analyses have used nonlinear classifiers; examples 

include Nonlinear Support Vector Machines and 

Neural Networks with hidden layers. Artificial 

Neural Networks have been used and compared with 

other methods by researchers. ANNs generally have 
outperformed some of these methods such as 

Gaussian Naive Bayes [9], ICA [3,16]. Hence 

Artificial Neural Networks is a good option to be 

used for fMRI data analysis.  

IV. ARTIFICIAL NEURAL NETWORKS 

Theoretical and computational neuroscience is the 

field concerned with the theoretical analysis and the 

computational modelling of biological neural 

systems. Since neural systems are intimately related 

to cognitive processes and behaviour, the field is 

closely related to cognitive and behavioural 

modelling. Artificial neural networks have been used 
by researchers to analyse brain fMRI data to a large 

extent. In that the Feedforward neural network and 

self organizing map are quite common and an 

attempt is made here to survey these methods 

proposed by several researchers [10]. 

A. Feedforward Neural Network 

The feedforward neural network was the first and 

simplest type of artificial neural network devised. In 
this network, the information moves in only one 

direction, forward, from the input nodes, through the 

hidden nodes (if any) and to the output nodes. There 

are no cycles or loops in the network. The simplest 

kind of neural network is a single-layer 

perceptron network, which consists of a single layer 

of output nodes; the inputs are fed directly to the 

outputs via a series of weights. Perceptrons can be 

trained by a simple learning algorithm that is usually 

called the delta rule. It calculates the errors between 

calculated output and sample output data, and uses 

this to create an adjustment to the weights, thus 
implementing a form of gradient descent.  Multi-

Layer Perceptron is a class of networks consisting of 

multiple layers of computational units, usually 

interconnected in a feed-forward way. Each neuron 

in one layer has directed connections to the neurons 

of the subsequent layer. In many applications, the 

units of these networks apply a sigmoid function as 

an activation function. Multi-layer networks use a 

variety of learning techniques, the most popular 

being back-propagation [11]. 

A standard SLFN with N hidden units and C 
output units can be mathematically modelled as: 

 

o =  wi . x + bi ),x ϵ Rd         ................(1) 

 

where f(·) is the activation function of hidden units, 

o is the output vector, αi is the weight vector 

connecting from the i-th hidden unit to the output 
units, bi is the threshold of the i-th hidden unit, and 

wi=[wi1, wi2, …, wid] is the input weight vector 
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connecting from the input units to the i-th hidden 

unit. wi·x =< wi, x> is the inner product of wi and x. 

The main goal of training process is to estimate the 

network weights wi, αi, and bi so that they minimize 

the error function defined by:                                 

              ...............(2) 

 
 

Traditionally, the estimation of the network weights 

is based on the gradient-descent algorithms and a 

popular training algorithm based on this is the 

backpropagation (BP) in which the networks are 

turned based on gradient descent with error 

propagation from the output layer to the input layer. 
This algorithm has some problems such as local 

minima, overtraining, learning oscillation, etc. 

Huang et.al. proposed an efficient learning algorithm 

for SLFNs called as the extreme learning machine 

(ELM) in which the minimization process of error 

function was based on the linear model: 

                              

HA=T,                                   ................(3) 

where H is called as hidden layer output matrix of 

SLFN and defined by: 

      H =  

 

                 T =  [ T 
 

                 A =  [ ]  
 

The SLFN along with RLS-ELM was used to decode 

the subject‟s cognitive states. The cognitive function 

considered in this study was a „Picture versus 

Sentence‟ study. The classification performance of 

SLFNs trained by RLS-ELM was shown to be better 

than that of Gaussian Naive Bayes [9]. 

Jose Paulo Santos et. al. justified the use of 

Artificial Neural Networks to analyze fMRI data. 

The ANNs due to their complexity and computing 

load had been used only to limited parts of the brain. 
However Jose Paulo Santos et. al. proposed to use 

ANN to analyze whole brain fMRI data. Since the 

fMRI dataset is usually voluminous, dimensionality 

reduction was performed using probabilistic 

independent component analysis (PICA). The 

independent components then entered a simple 

backpropagation feedforward neural network, which, 

after training, was used to predict brands‟ 

assessments of a different set of subjects. A hidden 

layer with four nodes had produced best results. The 

selected activation function for the hidden nodes was 
“tansig”, while for output neurons the function was 

“sigmoid”. The conclusion was that ANNs can 

model complex cognitive processes, which could 

predict choices above chance level. Also the hidden 

nodes organize into separate and sounding cognitive 

processes. This opens the possibility to define 

cognition, not based on explicit task outcomes, but 

relying on implicit neural substrates [12].  

J.A.Gutiérrez-Celaya et.al. built a 
supervised feedforward neural network-based 

classifier up on a classic Multi-Layer Perceptron 

(MLP) structure with three layers: input, hidden and 

output ones in order to explore the feasibility of 

automating the evaluation of stroke chronic patients‟ 

motor functions. The statistical pattern of brain 

activation corresponding to motor functionality 

captured by fMRI images was detected by artificial 

neural network based classifiers. The 

backpropagation algorithm was used for training the 

neural network and the gradient descent optimization 

technique to minimize the mean-squared error [13].  
During a visual rivalry paradigm, Nicola 

Bertolino et.al. provided a method based on ANN to 

identify the different neural pattern of activity 

related to the processing of two classes of visual 

stimuli (houses and faces), applicable in the absence 

of behavioural indicators, indicating which stimulus 

is perceived by participant [14].  fMRI was studied 

as the subjects viewed binocular non-rivalry (BNR) 

and binocular rivalry(BR) tasks. First the BNR was 

used to identify brain areas involved in face and 

house decoding, then the ANN was trained on this 
data, and finally the trained ANN was employed to 

discriminate the pattern of activity in BR task 

analysis and verified the consistency of these results 

with the behavioural response. A one-layer Feed-

Forward Neural Network with a Log-Sigmoid 

Transfer Function with hidden layer size of 65 

neurons was employed. The Mean Square Error 

(MSE) relative to the difference between the target 

outputs (presented stimuli) and the values predicted 

by the model (network outputs) was used as a 

performance function.  The main results showed that 

the trained ANN was able to generalize across the 
BNR and BR fMRI paradigms and identify with 

high accuracy the cognitive state of the participant 

during the BR condition. Fig 2 shows the bar plot of 

ANN percentage of successes for each subject.   

 
Fig 2: Bar plot of ANN percentage of successes for each 

subject 

The single-subject analysis performed on the BNR 

data revealed that the participants showed activity 

for the contrast faces>houses in the posterior 
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fusiform gyrus (i.e., FFA) and in the inferior 

occipital gyrus (i.e., OFA) (Fig. 3A), while for the 

contrast houses>faces in the parahippocampal gyrus 

(Fig. 3B). 
 

     
Fig 3(A,B): Example of resulting BOLD activity from GLM 

single subject  analysis of BNR-localizer task.   

B. Self-Organizing Map (SOM) 

A Self-Organizing Map (SOM) is a kind 

of artificial neural network (ANN). It is trained 

using unsupervised learning. It is a method to 

do dimensionality reduction as it produces a low-

dimensional (usually two-dimensional), discretized 
representation of the input space of the training 

samples, called a map. SOMs differ from other 

ANNs because they apply competitive learning as 

opposed to error-correction learning (such 

as backpropagation with gradient descent), and they 

use a neighbourhood function to preserve 

the topological properties of the input space. This 

makes SOMs useful for visualizing low-dimensional 

views of high-dimensional data, akin 

to multidimensional scaling. Like most artificial 

neural networks, SOMs operate in two modes: 
training and mapping. "Training" builds the map 

using input examples (a competitive process, also 

called vector quantization), while "mapping" 

automatically classifies a new input vector. SOM has 

been used by many researchers in the analysis of 

fMRI data [15]. 

The SOM algorithm consists of two major steps:  

1) determining the winner node; and 2) updating the 

weight vectors associated with the winner node and 

some of its neighbouring nodes. Prior to training, the 

weight vectors associated with each node of the map 

are suitably initialized. For a profitable initialization, 
the vectors are sampled evenly from the subspace 

spanned by the two largest principal component 

eigenvectors. The training expands over several 

iterations and is based on competitive learning. In 

each iteration, a vector x = [x1, x2, . . . , xn ]T ϵ Rn 

(where n is the length of fMRI data) from the input 

space is compared with the weight vectors of the 

nodes mi = [mi1,mi2, . . . , min ]
T ϵ Rn (where i =1, 2, . 

. . , N; N being the total number of nodes) to 

determine the winner node, often referred to as the 

best matching unit(BMU). The BMU refers to the 
node whose weight vector is the closest match of the 

input vector based upon a similarity metric. The 

most commonly used metric is the Euclidean metric: 

 

│x −mc│ = min{│x −mi│}    i = 1,        ...............(4) 

 

where ││ represents the Euclidean norm, x is the 
vector under consideration, mi denotes the weight of 

the ith node on the map, and mc represents the 

weight of the BMU. Once the BMU is determined, 

the weight vectors associated with the BMU and 

some of its neighbours in the map are updated to 

make them more similar to the input vector 

 

mi(t + 1) = mi(t) + hci(t) [x(t) −mi(t)]            ..........(5) 

 

where t is the current iteration number; hci(t) is 

defined as the neighbourhood kernel that controls 

the number of neighbouring nodes to be updated and 
the rate of update in each iteration. The magnitude of 

this update decreases with time (iteration) and for 

nodes farther away from the BMU with a suitable 

kernel. In general, the neighbourhood kernel takes 

the form of a Gaussian function: 

 

  hci(t) = α(t) exp(-│ri − rc│
2  / 2σ2 (t))       ............(6) 

 

where ri and rc are spatial coordinates of the ith node 

and the winner node, respectively, in the output 

space; σ is the fullwidth at half-maximum (FWHM) 
of the Gaussian kernel that determines the 

neighbouring nodes to be updated. α denotes the 

learning rate that controls how fast the weights get 

updated. Both σ and α decrease monotonically with 

the increase in the learning iteration t. 

Meyer-Baese et.al. experimentally 

compared two exploratory data analysis methods for 

fMRI: the ICA techniques versus unsupervised 

clustering. One of the algorithms used in 

unsupervised clustering is SOM. From ROC 

analysis, it was observed that the clustering methods 

outperform the transformation-based methods and 
SOM was outperformed by topographical ICA [16].   

Wellington P. dos Santos et.al. present a 

new approach for the detection of activated brain 

regions: the composition and analysis of synthetic 

multi and monospectral images using statistical 

methods and proposing non-parametrical methods 

based on Kohonen self-organized networks. SOM 

has an advantage of reducing a multispectral 

problem to a monospectral approach, eliminating the 

computational cost associated to the computing of 

the accumulated probabilistic distribution functions 
of the hypothesis tests [17].  

Wei Liao et.al. proposed a method that 

integrates improved SOM and HC (Hierarchical 

clustering) in detecting and classifying brain 

activation. The validity of the algorithm was tested 

by a simulation study and real fMRI data, both of 

which included block-design and event-related 

experiments. The results show that the new 
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integrated algorithm can identify activities that arise 

from different signal sources, other noise sources 

such as head motion, and different response patterns 

that arise from simultaneous stimulus tasks [18].  

Fournel et. al. demonstrated that SOM 

algorithm is a good candidate for multi-voxel pattern 
analysis methods as it leads to good performance 

and allows to extract information about cognitive 

processes. Because SOM is designed for working 

with whole brain functional data, and due to the 

unsupervised nature of the algorithm, neuroimaging 

data can be analyzed without any prior assumptions. 

The results showed that, in the single-subject 

condition, the average classification performance on 

all conditions was 85.4% as shown in fig 4 and the 

average recognition performance on all condition 

was 92.72%. In the inter-subject classification, the 

average classification rate was 80.237% and the 
average prediction rate for the three experimental 

conditions was 83.33%. However, the study did not 

focus on projecting back the weights of an artificial 

neuron (i.e. a prototype of a cognitive state) into 

cerebral space [19]. 

Santosh B.Katwal et.al. proposed to use a 

graph-based visualization technique for SOM. The 

visualization scheme incorporated two metrics of 

SOM node connectivity 

 

 
Fig 4: Average performance prediction of SOM algorithm for 

single subject classification 

 

based on 1) local density distribution across SOM 

prototypes; and 2) local similarities (correlations) 

between the prototypes. The combined visualization 

effectively captured cluster boundaries and 

delineated detailed connectivity structures of the 

meaningful data [3]. The Density-Based 

Connectivity Visualization, CONNDDvis was 

realized by rendering of the connectivity matrix, 

CONNDD, over the SOM lattice. The existence of 

an edge between two prototypes mi and mj on the 
graph indicates that they are neighbours in the input 

data space and the weight of the connection between 

them gives its connectivity strength: 

 

CONNDD(i, j) = │RFij│ + │RFji│ i, j = 1, 2,  

.......(7) 

 

where |RFij | denotes the number of input vectors in 

the receptive field of prototype mi for which mj is 

the second BMU(mi being the first BMU). The 

correlation coefficient matrix, CONNCC, which 

includes temporal similarities (correlation 

coefficients) of neighbouring prototypes, can be 
visualized graphically to display local similarities in 

the prototypes. The weight on the edges between 

two prototypes gives the measure of their similarity. 

The visualization obtained from CONNDDvis and 

CONNCCvis was merged to obtain a combined 

connectivity visualization that emphasizes 

delineation of connectivity structures of prototypes 

representing task-related signals.  

 

CONNDDCC(i, j)=CONNDD(i, j) 

×CONNCC(i,j)...........(8) 

 
CONNDDCC denotes overall connectivity strength 

between mi and mj and includes both density-based 

connectivity and correlation-based connectivity 

between prototypes.  

The performance of SOM applied in conjunction 

with the graph based visualization was compared 

with ICA and GLM. It was found that SOM 

outperformed ICA and GLM by providing highest 

sensitivity in classifying regions based on the timing 

of their responses. Fig 5 shows the voxels identified 

by SOM, ICA and GLM. There are variations to 
SOM which have been proposed like the Growing 

Self Organizing Map(GSOM) and Conscience Self-

Organizing Map (CSOM). 
 

                     
Fig 5: Voxels identified by SOM, ICA, GLM 

 

Huang et.al. [21] demonstrated the potential 

of GSOM as a tool used for fMRI data analysis. 

When using SOM, users have to predefine the size 

of the map, i.e. the structure of SOM map is fixed 

whose capability of discovering data becomes 

limited. As an improvement version of the 
traditional SOM, Growing Self Organizing Map 

(GSOM) enables its map to grow dynamically based 

on the input data. A significant feature of GSOM is 

the spread factor (SF) parameter, which can be used 

to control the growth of the GSOM map. The value 

of spread factor (SF) is between 0 and 1. For lower 

SF, the lower level of spread of the map is displayed 
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and vice versa, which means users can analyse data 

in hierarchical levels.  

 
Fig.6 GSOM clustering images when subject was at rest 

 

Huang et.al. used GSOM as a visualization 

tool to cluster fMRI finger tapping and non-tapping 

data. The finger tapping experiment during the fMRI 

scan is commonly conducted for clinical purpose, for 
instance, it enables researchers to profile Parkinson 

Disease characteristics because of finger tapping 

deficits already discovered in Parkinson patients. 

The GSOM starts with a minimal number of nodes 

(usually 4) and grows new nodes on the boundary 

based on a heuristic. By using the SF, the data 

analyst has the ability to control the growth of the 

GSOM. All the starting nodes of the GSOM are 

boundary nodes, i.e. each node has the freedom to 

grow in its own direction at the beginning. New 

Nodes are grown from the boundary nodes. Once a 

node is selected for growing all its free neighbouring 
positions will be grown new nodes. Due to the 

flexible structure and dynamic node adding capacity, 

the GSOM has shown to provide better visualization 

as well as faster processing speed compared to the 

SOM. A further key application has been the use of 

the SF parameter to develop GSOMs at different 

levels of spread, thus enabling the generation of 

hierarchies of clusters. The GSOM based analysis 

performed by Huang et.al. and the results are 

displayed as under. Fig.6 shows 36 GSOM 

clustering images corresponding to 36 brain 
horizontal slices when the subject was at rest. Fig.7 

illustrates 36 GSOM clustering partitions images 

when the subject was tapping fingers. 

 
Fig.7 GSOM clustering images when subject was tapping fingers 

 

Image 36 in Fig.6 is taken as an example, 

where in order to observe the detailed structure of 

the middle red area, hierarchical levels of spread 

factors are used as follows in Fig.8. Fig.8 indicates 

that GSOM is able to represent hierarchical levels 

visualization of areas of interest. Therefore, detailed 

insight of brain images were obtained by using 

higher level of spread factors. 
 

 
Fig.8 Sub region details by using higher spread factors           

                   

The scaled Euclidean similarity between images 35 

in Fig.6 and Fig.7 is 1, which indicates that there are 

differences between these two images. However, 

with spread factor 0.00000000001, it was not 

possible to tell the difference by visualizing image 

35 in Fig.5 and its counterpart in Fig.7. Therefore, a 

higher spread factor of 0.000001 was applied to the 

middle area of interest within these images. As 

shown in Fig.9, GSOM is able to distinguish tapping 
or non-tapping horizontal brain slice 35. 

     

 
Fig.9 Comparison between images by using higher spread factors 
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Patrick O‟Driscoll et.al. have used 

Conscience Self-Organizing Map (CSOM) as a 

clustering method for delineating functional sub-

networks that are active when an individual 

performs an approach-avoidance paradigm [22]. The 

CSOM is a subsequently developed version of SOM 
because of its ability to enforce equi-probabilistic 

(maximum entropy) mapping of the data points x ϵ 

M to the VQ prototypes. This facilitates optimal 

information transfer about the data distribution (with 

the given N prototypes). The CSOM learning 

algorithm is given here and also where it differs 

from the Kohonen SOM is indicated. After 

initialization of the prototypes wi, learning consists 

of many cycles (indexed by t) through the following 

steps. Competition: For a random x ϵ M find the 

closest (winner) prototype wc: 

 
c(x) = argmini(||x − wi|| − biasi),        i = 1, · · · ,N   

..........(9) 

 

where the scalar quantity biasi is computed from the 

winning frequency Fi of wi as biasi = ᵞ(1/N−Fi), and 

the winning frequencies of all prototypes are 

updated after winner selection. (ᵞ is a user-controlled 

parameter.) The biasi is the conscience, inducing 

infrequent winners to win more, frequent winners to 

win less data points. ᵞ= 0 reduces eq. (9) to the 

winner selection of the Kohonen SOM. Weight 

adaptation: the winner wc and its neighbours in the 

SOM lattice are moved closer to x. 

 

wi(t + 1) = wi(t)  +  α(t) hc,i(t) (x − wi)                
..............(10) 

 

  The SOM lattice region influenced by the update 

is defined by the radially decreasing neighbourhood 

function hc,i(t) centered over the winner. For the 

Kohonen SOM, it is often a Gaussian, and initially 

must cover most of the SOM lattice. Both hc,i(t) and 

the learning rate α(t) must decrease with time t in 

order to achieve topologically correct ordering of the 

prototypes in the SOM grid. The CSOM has another 

advantage: it only needs to update the immediate 

neighbours in eq. (10) because cooperation across 
the lattice is ensured by the conscience mechanism. 

This leads to substantial savings in computation. 

Patrick O‟Driscoll et.al. applied CSOM clustering 

using data from a single subject who was shown 

only three unpleasant faces. The results showed a 

representative image with several SOM clusters that 

cover known functional areas. 

 

V. CONCLUSIONS 

ANNs are suitable for BOLD fMRI signal analysis 
and perform better than the traditional GLM 

analysis, Gaussian Naive Bayes or the ICA. Initially 

due to the high complexity and computational load, 

the ANNs were applied only to a few parts of the 

brain or only to few ROIs. But this has been 

extended to the whole brain region along with 

dimensionality reduction methods and thereby 

giving good results. ANNs have been demonstrated 

to be suitable for modelling complex cognitive 

processes, detecting brain activity and functional 

connectivity. The SOM algorithm also proves to be a 

good candidate for MVPA analysis as it leads to 
good performance and allows for a coherent 

prototype projection in the standard space. The SOM 

algorithm also has a potential to be extended to 

determine the temporal sequence of brain processes 

and possibly reveal the dynamics of inter-regional 

influences in the brain. GSOM and CSOM are the 

different versions of SOM which are being 

investigated to be used as a potential tool for fMRI 

data analysis. 
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