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Abstract: Locality Sensitive Hashing (LSH) is a 

technique which is generally used to reduce the 

dimensionality of the given data. In this paper, I 

have used the Gaussian approach to reduce the 

dimensionality of a given massive dataset. Then 

used the binary matrix generated and created a 

neighbourhood graph for the given dataset. From 

the neighbourhood graph derived we can calculate 

the Adjusted Rank Index (ARI) value of the given 

dataset after applying Locality Sensitive Hashing. 

Since LSH is an Approximate Nearest Neighbour 

(ANN) calculation we approximately find the 

nearest neighbours of the given training dataset 

and check ARI value to see how closely the value 

approximately is from the actual neighbours 

present of different classes in the dataset. 
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I. Introduction 

Nearest neighbour search (NNS), as a form of 

proximity search, is the optimization problem of 

finding the point in a given set that is closest (or 

most similar) to a given point.For datasets, we need 

to check the similarity with each point in the entire 

dataset from the given query point.Approximate 

Nearest Neighbor search (ANN) on the other 

hand decides fewer number of candidate pairs 

which are hashed to the same “bucket” based on 

hash lengths and only among those candidate pairs 

in the same “bucket” or the nearby buckets are 

checked thus reducing the unnecessary scanning of 

the entire dataset to a minimum.Locality-sensitive 

hashing (LSH) reduces the dimensionality of high-

dimensional data. LSH hashes input items so that 

similar items map to the same “buckets” with high 

probability.Each bucket has similar items hashed 

inside it.Given a query point, we wish to find the 

points in a large database that are closest to the 

query.We find the k-nearest neighbors for a 

particular point.Before finding the k-neighbor for a 

query point we initially make neighborhood graph 

with the points given in the training dataset.[2] 

Bawa M et alThe intuition behind LSH-based 

indexes is to hash points into buckets, such that 

“nearby” points are much more likely to hash to the 

same bucket than points that are far apart. We 

could then find the approximate nearest neighbours 

of any point, simply by finding the bucket that it 

hashes to, and returning the other points in the 

bucket. 

II. Existing Works on LSH 

Jefferey Ullman et al [1] suggested a method 

called the Minhash algorithm for finding similar 

sets among documents from massive datasets. They 

used a method called the Jaccard Similarity to find 

the similarity among two documents. Jaccard 

similarity of two sets S and T is defined as 

 S ∩ T 

 S ∪ T 
 

which can also be stated as the ratio of the size of 

intersection of S and T to the size of their union. 

After calculating the similarities between two sets 

for the entire dataset, a signature matrix is created. 

Again think of a collection of sets represented by 

their characteristic matrix M. To represent sets, we 

pick at random some number n of permutations of 

the rows of M. Perhaps 100 permutations or several 

hundred permutations will do. Call the Minhash 

functions determined by these permutations h1, h2.  

. . hn. From the column representing set S, construct 

the Minhash signature for S, the Vector [h1(S), 

h2(S) . . . hn(S)]. We normally represent this list of 

hash-values as a column. Thus, we can form from 

matrix M a signature matrix, in which the ith 

column of M is replaced by the Minhash signature 

for (the set of) the ith column.A hash function that 

maps integers 0, 1, . . . , k −1 to bucket numbers 0 

through k−1 typically will map some pairs of 

integers to the same bucket and leave other buckets 

unfilled. However, the difference is unimportant as 

long ask is large and there are not too many 

collisions. We can maintain the fiction that our 

hash function h “permutes” row r to position h(r) in 

the permuted order. Thus, instead of picking n 

random permutations of rows, we pick n randomly 

chosen hash functions h1, h2.  . . hn on the rows. We 

construct the signature matrix by considering each 

row in their given order. Let SIG(i, c) be the 
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element of the signature matrix for the ith hash 

function and column c. Initially, set SIG(i, c) to ∞ 

for all i and c. We handle row r by doing the 

following: 

1. Compute h1(r), h2(r) . . . hn(r). 

2. For each column c do the following: 

(a) If c has 0 in row r, do nothing. 

(b) However, if c has 1 in row r, then for each i = 1, 

2. . . n set SIG (i, c)to the smaller of the current 

value of SIG (i, c) and hi(r).[7]One general approach 

to LSH is to “hash” items several times, in such a 

way that similar items are more likely to be hashed 

to the same bucket than dissimilar items are. We 

then consider any pair that hashed to the same 

bucket for any of the hashings to be a candidate 

pair. We check only the candidate pairs for 

similarity. The hope is that most of the dissimilar 

pairs will never hash to the same bucket, and 

therefore will never be checked. Those dissimilar 

pairs that do hash to the same bucket are false 

positives; we hope these will be only a small 

fraction of all pairs. We also hope that most of the 

truly similar pairswill hash to the same bucket 

under at least one of the hash functions. Those that 

do not are false negatives; we hope these will be 

only a small fraction of the truly similar pairs. If we 

have Minhash signatures for the items, an effective 

way to choose the hashings is to divide the 

signature matrix into b bands consisting of r rows 

each. For each band, there is a hash function that 

takes vectors of r integers (the portion of one 

column within that band) and hashes them to some 

large number of buckets. We can use the same hash 

function for all the bands, but we use a separate 

bucket array for each band, so columns with the 

same vector in different bands will not hash to the 

same bucket. 

III. Gaussian Approach to LSH 

A. Algorithm Proposed 

 [5] Datar, Met al Generate random 

hyperplanes. 

 The hyperplanes define the hash code for 

each sample. 

 Similar elements hash to same bucket. 

 Make the neighborhood graph for k-

nearest neighbors for the training dataset. 

 For incoming query points, calculate the 

hash codes according the hyperplanes and 

search the approximate k-neighbors. 

 Calculate nearest neighbors from the 

matched bucket using cosine distance. 

 Use hamming distance to check the 

nearest bucket available if exactly 

matched bucket doesn’t have k-samples 

within itself and then repeat the above step 

for nearest bucket. 

 To avoid false negatives and false 

positives generate hyper planes and hash 

buckets for L tables. 

 

B. Hyperplanes generated 
Lavrenko, V [4] et al proposed the below diagram. 

This diagram shows the random hyperplanes 

generated using random hash functions. The 

random hash functions were created using Gaussian 

distribution and then projected as hyperplanes for 

different tables using different functions. 

 

 

 

Figure 1:  Random Hyperplanes generated using Hash Functions.
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C. Required Formulae 

The Hamming distance between two strings of 

equal length is the number of positions at which the 

corresponding symbols are different. In other 

words, it measures the minimum number 

of substitutions required to change one string into 

the other, or the minimum number of errors that 

could have transformed one string into the 

other.The Cosine Similarity of two vectors is 

given by similarity = cos (θ) =
A.B

 A  B 
. 

D. Calculation of ARI  

Datasets Used: 

I used mostly datasets which were included in 

mlbench library including Iris, Sonar, Ionosphere, 

Glass etc. Calculated the neighbourhood graphs for 

the given data sets and then calculated the ARI 

value at end. For this paper itself I am going to 

show the working and output for the Iris dataset. 

Iris dataset: 

In the iris dataset we broadly have three classes: 

setosa, versicolor, virginica. Each class has 50 

samples each constituting a total of 150 samples 

and there are 4 different features: sepal length, 

sepal width, petal length, petal width.We now use 

to code developed in R to generate the 10 nearest 

neighbour matrix for each sample and finally 

calculate the Adjusted Rank Index value for the Iris 

dataset. 

 

Figure 2: Clusters formed for 3 classes of Iris 

Dataset 

As we can clearly see that around 5 clusters are 

formed for the 3 classes of Iris dataset. The 

different species of Iris are shown by different 

colours in the graph.ARI value = 0.5475719 

E. Output values and discussion of 

Results 

 

 
Figure 3: Neighbourhood Matrix for first 15 

samples 

 
Figure 4: Division of 5 clusters among 3 species 

We can observe that the ARI value is 0.5475719 

and the five clusters is divided among 3 species of 

Iris dataset as stated above in the diagram. So the 

Adjusted Rank Index value is approximately 55% 

accurate which means the LSH algorithm devised 

using Gaussian approach is approximately accurate 

in finding the nearest neighbours of the samples in 

the IRIS dataset. 

 

F. Complexity and Computational 

Cost 
 [5]N points, D- dimensional, K 

hyperplanes 

 D*K …. To find bucket where point lands 

 2^K …. Possible no. of hash codes 

 N/2^K …. Points in that bucket (on 

average) 

 D*N/2^K …. Cost of comparisons 

 Repeat everything L times (hash tables) 

So,Total cost = (L*D*K) + (L*D*N/2^K)    O 

(log N)   if K ~ log N 

 

IV. Conclusion and Future Work 
 

As we can see in the above example where I used 

IRIS dataset it returned a 55% accurate result for 

finding the nearest neighbours of the given 

samples. LSH is actually an Approximate Nearest 

Neighbour (ANN) algorithm and hence its accuracy 

is compromised for the speed. LSH basically helps 

reduce the time complexity and search space for a 
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given dataset to huge extent and hence sometimes 

the accuracy may not be as high as other Nearest 

Neighbour Search (NNS) algorithms. But, we can 

surely work towards improving the accuracy of 

LSH provided we keep in mind not to increase the 

search space. This method is largely used for 

massive datasets and hence there lies the 

application of LSH. 
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