
International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 1 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 41

Calculating Adjusted Rank Index using

Locality Sensitive Hashing (LSH): A Gaussian

Approach
Aritra Banerjee¹

¹4th year B.Tech CSE, School of Computer Science and Engineering, VIT University, Chennai

Vandalur-Kelambakkam Road, Chennai -600048, Tamil Nadu.

Abstract: Locality Sensitive Hashing (LSH) is a

technique which is generally used to reduce the

dimensionality of the given data. In this paper, I

have used the Gaussian approach to reduce the

dimensionality of a given massive dataset. Then

used the binary matrix generated and created a

neighbourhood graph for the given dataset. From

the neighbourhood graph derived we can calculate

the Adjusted Rank Index (ARI) value of the given

dataset after applying Locality Sensitive Hashing.

Since LSH is an Approximate Nearest Neighbour

(ANN) calculation we approximately find the

nearest neighbours of the given training dataset

and check ARI value to see how closely the value

approximately is from the actual neighbours

present of different classes in the dataset.

Keywords: Locality Sensitive Hashing, Adjusted

Rank Index, Gaussian, Approximate Nearest

Neighbour

I. Introduction

Nearest neighbour search (NNS), as a form of

proximity search, is the optimization problem of

finding the point in a given set that is closest (or

most similar) to a given point.For datasets, we need

to check the similarity with each point in the entire

dataset from the given query point.Approximate

Nearest Neighbor search (ANN) on the other

hand decides fewer number of candidate pairs

which are hashed to the same “bucket” based on

hash lengths and only among those candidate pairs

in the same “bucket” or the nearby buckets are

checked thus reducing the unnecessary scanning of

the entire dataset to a minimum.Locality-sensitive

hashing (LSH) reduces the dimensionality of high-

dimensional data. LSH hashes input items so that

similar items map to the same “buckets” with high

probability.Each bucket has similar items hashed

inside it.Given a query point, we wish to find the

points in a large database that are closest to the

query.We find the k-nearest neighbors for a

particular point.Before finding the k-neighbor for a

query point we initially make neighborhood graph

with the points given in the training dataset.[2]

Bawa M et alThe intuition behind LSH-based

indexes is to hash points into buckets, such that

“nearby” points are much more likely to hash to the

same bucket than points that are far apart. We

could then find the approximate nearest neighbours

of any point, simply by finding the bucket that it

hashes to, and returning the other points in the

bucket.

II. Existing Works on LSH

Jefferey Ullman et al [1] suggested a method

called the Minhash algorithm for finding similar

sets among documents from massive datasets. They

used a method called the Jaccard Similarity to find

the similarity among two documents. Jaccard

similarity of two sets S and T is defined as

 S ∩ T

 S ∪ T

which can also be stated as the ratio of the size of

intersection of S and T to the size of their union.

After calculating the similarities between two sets

for the entire dataset, a signature matrix is created.

Again think of a collection of sets represented by

their characteristic matrix M. To represent sets, we

pick at random some number n of permutations of

the rows of M. Perhaps 100 permutations or several

hundred permutations will do. Call the Minhash

functions determined by these permutations h1, h2.

. . hn. From the column representing set S, construct

the Minhash signature for S, the Vector [h1(S),

h2(S) . . . hn(S)]. We normally represent this list of

hash-values as a column. Thus, we can form from

matrix M a signature matrix, in which the ith

column of M is replaced by the Minhash signature

for (the set of) the ith column.A hash function that

maps integers 0, 1, . . . , k −1 to bucket numbers 0

through k−1 typically will map some pairs of

integers to the same bucket and leave other buckets

unfilled. However, the difference is unimportant as

long ask is large and there are not too many

collisions. We can maintain the fiction that our

hash function h “permutes” row r to position h(r) in

the permuted order. Thus, instead of picking n

random permutations of rows, we pick n randomly

chosen hash functions h1, h2. . . hn on the rows. We

construct the signature matrix by considering each

row in their given order. Let SIG(i, c) be the

International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 1 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 42

element of the signature matrix for the ith hash

function and column c. Initially, set SIG(i, c) to ∞

for all i and c. We handle row r by doing the

following:

1. Compute h1(r), h2(r) . . . hn(r).

2. For each column c do the following:

(a) If c has 0 in row r, do nothing.

(b) However, if c has 1 in row r, then for each i = 1,

2. . . n set SIG (i, c)to the smaller of the current

value of SIG (i, c) and hi(r).[7]One general approach

to LSH is to “hash” items several times, in such a

way that similar items are more likely to be hashed

to the same bucket than dissimilar items are. We

then consider any pair that hashed to the same

bucket for any of the hashings to be a candidate

pair. We check only the candidate pairs for

similarity. The hope is that most of the dissimilar

pairs will never hash to the same bucket, and

therefore will never be checked. Those dissimilar

pairs that do hash to the same bucket are false

positives; we hope these will be only a small

fraction of all pairs. We also hope that most of the

truly similar pairswill hash to the same bucket

under at least one of the hash functions. Those that

do not are false negatives; we hope these will be

only a small fraction of the truly similar pairs. If we

have Minhash signatures for the items, an effective

way to choose the hashings is to divide the

signature matrix into b bands consisting of r rows

each. For each band, there is a hash function that

takes vectors of r integers (the portion of one

column within that band) and hashes them to some

large number of buckets. We can use the same hash

function for all the bands, but we use a separate

bucket array for each band, so columns with the

same vector in different bands will not hash to the

same bucket.

III. Gaussian Approach to LSH

A. Algorithm Proposed

 [5] Datar, Met al Generate random

hyperplanes.

 The hyperplanes define the hash code for

each sample.

 Similar elements hash to same bucket.

 Make the neighborhood graph for k-

nearest neighbors for the training dataset.

 For incoming query points, calculate the

hash codes according the hyperplanes and

search the approximate k-neighbors.

 Calculate nearest neighbors from the

matched bucket using cosine distance.

 Use hamming distance to check the

nearest bucket available if exactly

matched bucket doesn’t have k-samples

within itself and then repeat the above step

for nearest bucket.

 To avoid false negatives and false

positives generate hyper planes and hash

buckets for L tables.

B. Hyperplanes generated
Lavrenko, V [4] et al proposed the below diagram.

This diagram shows the random hyperplanes

generated using random hash functions. The

random hash functions were created using Gaussian

distribution and then projected as hyperplanes for

different tables using different functions.

Figure 1: Random Hyperplanes generated using Hash Functions.

International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 1 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 43

C. Required Formulae

The Hamming distance between two strings of

equal length is the number of positions at which the

corresponding symbols are different. In other

words, it measures the minimum number

of substitutions required to change one string into

the other, or the minimum number of errors that

could have transformed one string into the

other.The Cosine Similarity of two vectors is

given by similarity = cos (θ) =
A.B

 A B
.

D. Calculation of ARI

Datasets Used:

I used mostly datasets which were included in

mlbench library including Iris, Sonar, Ionosphere,

Glass etc. Calculated the neighbourhood graphs for

the given data sets and then calculated the ARI

value at end. For this paper itself I am going to

show the working and output for the Iris dataset.

Iris dataset:

In the iris dataset we broadly have three classes:

setosa, versicolor, virginica. Each class has 50

samples each constituting a total of 150 samples

and there are 4 different features: sepal length,

sepal width, petal length, petal width.We now use

to code developed in R to generate the 10 nearest

neighbour matrix for each sample and finally

calculate the Adjusted Rank Index value for the Iris

dataset.

Figure 2: Clusters formed for 3 classes of Iris

Dataset

As we can clearly see that around 5 clusters are

formed for the 3 classes of Iris dataset. The

different species of Iris are shown by different

colours in the graph.ARI value = 0.5475719

E. Output values and discussion of

Results

Figure 3: Neighbourhood Matrix for first 15

samples

Figure 4: Division of 5 clusters among 3 species

We can observe that the ARI value is 0.5475719

and the five clusters is divided among 3 species of

Iris dataset as stated above in the diagram. So the

Adjusted Rank Index value is approximately 55%

accurate which means the LSH algorithm devised

using Gaussian approach is approximately accurate

in finding the nearest neighbours of the samples in

the IRIS dataset.

F. Complexity and Computational

Cost
 [5]N points, D- dimensional, K

hyperplanes

 D*K …. To find bucket where point lands

 2^K …. Possible no. of hash codes

 N/2^K …. Points in that bucket (on

average)

 D*N/2^K …. Cost of comparisons

 Repeat everything L times (hash tables)

So,Total cost = (L*D*K) + (L*D*N/2^K) O

(log N) if K ~ log N

IV. Conclusion and Future Work

As we can see in the above example where I used

IRIS dataset it returned a 55% accurate result for

finding the nearest neighbours of the given

samples. LSH is actually an Approximate Nearest

Neighbour (ANN) algorithm and hence its accuracy

is compromised for the speed. LSH basically helps

reduce the time complexity and search space for a

International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 1 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 44

given dataset to huge extent and hence sometimes

the accuracy may not be as high as other Nearest

Neighbour Search (NNS) algorithms. But, we can

surely work towards improving the accuracy of

LSH provided we keep in mind not to increase the

search space. This method is largely used for

massive datasets and hence there lies the

application of LSH.

REFERENCES
[1] Anand RajaRaman, Jefferey Ullman, “Mining of Massive

Datasets”

[2] Bawa, M., Condie, T. and Ganesan, P., 2005, May. LSH

forest: self-tuning indexes for similarity search. In Proceedings

of the 14th international conference on World Wide Web (pp.

651-660). ACM.
[3] Lv, Q., Josephson, W., Wang, Z., Charikar, M. and Li, K.,

2007, September. Multi-probe LSH: efficient indexing for high-

dimensional similarity search. In Proceedings of the 33rd

international conference on Very large data bases (pp. 950-

961). VLDB Endowment.

[4]Moran, S., Lavrenko, V. and Osborne, M., 2013, August.

Variable Bit Quantisation for LSH. In ACL (2) (pp. 753-758).

[5]https://www.youtube.com/watch?v=Arni-zkqMBA

[6] Datar, M., Immorlica, N., Indyk, P. and Mirrokni, V.S.,

2004, June. Locality-sensitive hashing scheme based on p-stable

distributions. In Proceedings of the twentieth annual symposium

on Computational geometry (pp. 253-262). ACM.

[7]http://www.slaney.org/malcolm/yahoo/Slaney2008-

LSHTutorial.pdf

