
International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 2 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 83

A Flexible FPGA communication

Shubha Hiremath
1
, Meghana Kulkarni

2

1
MTech student, Department of VLSI Design and Embedded systems, VTU Belgavi, Karnataka, India

2
Associate Professor, Department of VLSI Design and Embedded systems VTU Belgavi, Karnataka, India

Abstract — This work is aimed at design and

implementation of VGA controller. Video Graphics

Interface is widely used as standard display

interface. The design consists of top layer module

design and the timing function simulation. Hardware

architecture is implemented on a NEXYS 3

SPARTAN 6 Field Programmable Gate Array chip,

which has gained considerable traction for its

application in conjunction with VGA controllers [1].

The focus is on system architecture, hardware

design and software programming. This controller is

developed using only VERILOG (hardware

description language) based on the IEEE standards,

to ensure the portability for any manufacturer. The

system can display various color strips, Chinese

characters, images and even perform certain image

processing techniques such as data compression,

noise removal etc. The results show that this

proposed algorithm gives good performance with

optimal time and low resource utilization of up to

54% registers and 31% functional units. Since, the

data can be sent directly to monitors, the design

speeds up data processing, improve system

reliability in real-time and conserve hardware

resources.

Keywords — FPGA, VERILOG, VGA Controller,

Nexys 3 Spartan 6.

I. INTRODUCTION (SIZE 10 & BOLD)

The most popular display interface for the

applications like video conference systems, face-

recognition systems, surveillance and remote vehicle

guidance systems, is Video Graphics Array (VGA).

VGA Controller is a system which works with high

frequency signals, possessing a property of hardware

exclusivity. Initially, the implementation and

corresponding usage was carried out directly on the

printed circuit boards, however the solutions

corresponding to these are accompanied with

parameters like over sizing and high power

dissipation.

The tools which are quite common are DSP, or

GPU. FPGA has better potential in terms of

parallelism than DSP. GPU has very high power

consumption, though it provides a flexible

environment for parallelism. With the advancements

in the field of semiconductor technology, FPGA’s

now hosts the capabilities like impacted size and low

power utilization. During the span of 2014 to 2020,

it is expected that the FPGA market will possess a

CAGR growth rate of 9.1 % [2].

An extensive work and research has been

conducted when it comes to image recognition

topics based on FPGA and corresponding algorithms

have been deployed and tested widely. In this work,

the solution is implemented on a FPGA hardware

unit and a top-down programming methodology is

adopted in the integration tools (XILINX ISE 14.3).

Each module can be downloaded into the FPGA,

post execution of the following steps:

implementation, compiling, function simulation,

layout and timing simulation. The advantages of this

work are compacting circuit board size,

accompanied with enhancement in reliability of the

system, providing for versatile design flexibility,

thus leading to lower costs [3].

II. TOOLS AND TECHNIQUES

The prototype application for communication

between FPGA and PC, and vice versa is as shown

in block diagram below, Fig.1. It has VGA interface

between FPGA and PC2 and JTAG interface

between PC1 and FPGA. Custom designed Verilog

module along with mapped text file generated

through MATLAB is dumped on to FPGA and

displayed on the VGA monitor on PC2. The

corresponding tools and techniques used to develop

this working prototype are listed below.

Fig. 1: Block Diagram of Prototype functioning

A. Hardware Unit1: Nexys3 Spartan-6

The Nexys3 is an FPGA hardware unit

manufactured by Xilinx, which provides a digital

circuit development platform, complete and ready to

use. This hardware is based on the Xilinx Spartan-6

LX16 FPGA. The Field programmable gate arrays

these days are entirely system on chip (SoC). The

FPGA board used for VGA controller

implementation in this project is a Spartan 6 kit by

Nexys 3 [4].

 It is a digital circuit development platform

based on the Xilinx Spartan-6 LX16 FPGA. Its

features include 2,278 slices, each slice contains four

6-input LUTs and eight flip-flops, 576kbits of fast

block RAM, two clock tiles (four DCMs & two

PLLs), 32 DSP slices and 500MHz+ clock speeds

[4].

 It includes 16Mbytes of Cellular RAM,

32Mbytes of micron’s latest phase change non-

International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 2 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 84

volatile memory, an USB-UART port, also an USB

host port for mice and keyboards, a 10/100 ethernet

PHY, and an improved high-speed expansion

connector. These exclusive peripherals make the

Nexys3 board an ideal host for a wide range of

applications. Nexys3 uses Digilent’s Adept USB2

system, which offers both FPGA and ROM

programming and is compatible with all Xilinx CAD

tools including EDK, ChipScope, and free WebPack

[4].

B. Hardware Unit2: VGA Controller

VGA can be referred to as an Analog computer

display or the 15 pin D-subminiature VGA

connector or to the 640x480 resolution itself. The

VGA Signal Timings have been tabulated in below

Table.1 [5]. A 25 MHz pixel clock and 60 Hz ± 1

refresh was employed to derive these signal timings

for a display (640 pixel by 480 row). The relation

between each timing symbol is depicted in Fig.2.

Through examination of different VGA display, the

timing for sync pulse width (TPW) and front and

back porch intervals (TFP and TBP) are derived.

Back porch parameters are the pre-and post-sync

pulse times. During these intervals, data cannot be

displayed [5].

Sy

mb

ol

Para

mete

r

Vertical Sync Horizonta

l Sync

 Time Cloc

ks

Lin

es

Tim

e μs

Clo

cks

TS Sync

Pulse

time

16.7

ms

416,8

00

521 32 800

TDI

SP

Displ

ay

time

15.36

ms

384,0

00

480 25.6 640

TP

W

Pulse

width

64 μs 1,600 2 3.84 96

TFP Front

porch

320

μs

8,000 10 640 16

TB

P

Back

porch

928

μs

23,20

0

29 1.92 48

Table 1: 640x480 VGA Mode timing

Generally, the horizontal timing is controlled by a

counter clocked by the pixel clock. The HS signal is

generated by decoded counter values. On a provided

row, current pixel display is tracked by this counter.

Vertical timing is tracked by a separate counter.

Further, the VS signal is generated by decoded

values. With every HS pulse, the vertical-sync

counter gets incremented. Display row is tracked by

this counter. The address into a video display buffer

is formulated by these two simultaneously running

counters. In between onset of HS pulse and onset of

VS pulse, there is no time relationship specified.

Consequently, the counters can be arranged to

reduce the decoding logic for sync pulse generation

or easy formation of video RAM addresses.

Fig. 2: VGA Control Timing

C. Software tool1: MATLAB 7.10 R2010A

The MATLAB tool was used to read the image

which is supposed to be dumped on the FPGA kit

and displayed on the VGA monitor screen

D. Software design tool2: Xilinx ISE 14.3

The Xilinx ISE 14.3 tool was used as a base IDE

to run and execute Verilog code that was primarily

done as a pre-test before hardware deployment

E. Tool Chain

The tool chain required to execute the project was

established on factors like, no clash which may lead

to compatibility and other unknown issues. The tool

chain is displayed in the Fig.3 below.

Fig. 3: Tool Chain for Prototype Application

In this work, a top model was formulated in

Xilinx, which constituted of all the programs

encompassing horizontal scan, vertical scan, color

code, and clock division. MATLAB was used for

pre-processing of the image, wherein the image was

read and accompanied with conversion into text file,

which was further dumped into the FPGA hardware

unit. Next, FPGA sent across this processed image to

the VGA monitor via VGA cable and the output was

displayed in the monitor.

A 24-bit sample picture is taken. It is converted to

a 3-bit format which is compatible with both Spartan

6 FPGA board and VGA display controller. The

application uses three fundamental colors Red,

Green and Blue. Each color is of 8bits, when these

International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 2 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 85

colors are merged the combination will be a 24-bit

image. Since the image should be made compatible

with both the Spartan 6 FPGA and the VGA port, it

is scaled down to 8bits. After scaling down each of

the red and green colors, flatter down to 3bits each

and blue color takes a 2bit value which when

juxtaposed becomes an 8-bit image. The text file is

the MSB value of R, G and B colors of each pixel.

The 3-bit display color code is as shown in Table.2

below [5].

GA_RED VGA_GR

EEN

VGA_

BLUE

Resulting

Color

0 0 0 Black

0 0 1 Blue

0 1 0 Green

0 1 1 Cyan

1 0 0 Red

1 0 1 Magenta

1 1 0 Yellow

1 1 1 White

Table 2: RGB values for color code 1

As shown in the above tabulation Table.2, the

MSB value of R, G and B colors forms the text file

indicating the resulting color. For example, if both

Green and Blue are 0 and MSB Red is 1 then the

color would be Red and so on the color strips

corresponding to the bits are generated. When

associated with the MATLAB code through which

the image is read, the image is been dumped and

displayed on the VGA screen.

III. PROPOSED ARCHITECTURE

Fig.4 depicts the proposed block diagram of VGA

Controller, consisting reset generator block, clock

generator block and VGA Controller block. Clock

pulse of 100MHz and reset signal is provided as

input to the block and RGB (red, green, blue),

horizontal synchronization, vertical synchronization

and blanking signals are obtained as outputs. The

objective of reset block is to produce the reset signal

and that of clock generator is to decrease the

frequency of input clock from 100 MHz to 25 MHz,

to realize 640 x 480 resolution [6], [8].

The VGA synchronization, vga_sync signal

generates the timing and synchronization signals,

vga_hs which specifies the time to scan a row and

vga_vs specifies the time required to scan the entire

screen. The vga_blank indicates retrace period of the

display [5], [7].

Fig. 4: Proposed Block Diagram

IV. IMPLEMENTATION AND RESULTS

A. Steps for Implementation

i. Take a Nexys3 Spartan-6 Development Board.

ii. Connect 12V supply through adapter to turn

ON/OFF the board.

iii. Connect JTAG cable to PC1 and also VGA cable

to PC2.

iv. Open Xilinx ISE14.3 software, by double

clicking on Xilinx 14.3 icon and compile Verilog

code in the software.

vi. Assign the pins at pin planner, by using user

manual of the development board.

vii. In order to dump the program on board, select

the device program, verify and observe the color

strips on the VGA monitor screen of PC2.

viii. To display and observe the image associate and

read the MATLAB code with the Verilog module

through read mem function.

B. Flow Chart

Fig. 4: Flow chart for VGA controller implementation

International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 2 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 86

The flowchart specified in Fig.5 describes the

operation of VGA controller and the verilog module

flow. The following algorithm is used to describe the

flowchart:

Step.1 Run the matlab code and generate a text file.

Step .2 Place the text file in the verilog directory

Step.3 Reduce the 100MHz FPGA clock frequency

to 25MHz

Step.4 Set the horizontal and vertical

synchronization signal timings suitable for the

respective VGA controller mode

Step.5 Input the RGB values of 8bits to display the

color strips on the VGA monitor

Step.6 Increment the location of x_pixes and

y_pixels

Step.8 If x_pixel is equal to 640 and y_pixel is equal

to 480, the condition satisfies and the respective

image is displayed on the VGA monitor screen

Step.9 Else the pixels are incremented to 640x480

resolution and then the image is displayed.

C. Results

The results as compared with the existing system

show all the possible combinations of RGB colors.

This reduces the area required for the colors to be

displayed and thus the power consumption [9]. Also

the methodology involves generating text file of the

image to be displayed which again saves the time

required for hex file generation [10].

The verilog module is designed in Xilinx ISE 14.3.

It includes codes for clock division that reduces the

clock frequency to 25MHz, color display which is

responsible for the display of the RGB colors of

8bits, horizontal and vertical synchronization codes

for scanning the horizontal and vertical lines of the

VGA screen.

Fig. 6: RTL schematic of Verilog module

This verilog module can be observed in Fig.6

which shows the RTL schematic of the module. This

module when simulated and dumped on to the

Spartan 6 FPGA kit displays color strips on the

VGA monitor screen of PC2 which can observed in

Fig.7.

Fig. 7: Colour strips on VGA screen

Further coding is done in MATLAB to read a

specific image and convert it into text file. This text

while when placed in the directory of the verilog

module can be read by the module through a

read_mem file. This integrated code when dumped

on to the Spartan 6 kit display the image read by the

MATLAB on the VGA screen of PC2 which is as

shown in Fig.9.

Fig.8: Simulation results

Fig. 9: Image displayed on VGA screen

International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 2 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 87

V. CONCLUSION

A flexible communication is thus established

between two PCs and the required image is

transmitted. This communication defines and

describes a VGA controller as to how it is used to

establish interconnection between the VGA monitor

screen and Spartan-6 FPGA through VGA port, in

order to display the color strips formed by basic

RGB colors and read the required image. Individual

modules of VGA controller are developed using

verilog HDL and functionally verified using Xilinx

ISE. The synthesis is done using Spartan-6 FPGA

and the results for the system development specify

reduced number of resources utilized that is upto

54% of registers and 31% of functional units. In this

proposed design, it can be said that FPGA is very

feasible and convenient method in implementing

VGA controllers as it requires new data to change

the design and display each time. Verilog HDL

makes the design flexible, reliable and convenient.

The text file generation through MATLAB and

VGA controller together are used for image

processing and its results are better than the

conventional BRAM method that consumes much

processing time for image conversion [10].

REFERENCES

[1] FPGA Based Multi Resolution Graphics Controller,

Abhijith S, International Journal of Engineering Trends and

Technology (IJETT) – Volume 14 Number 6 – Aug 2014.

[2] http://economictimes.indiatimes.com/topic/CAGR

FPGAmarket growth
[3] Philip H.W. Leong, Dept. of Computer Science and

Engineering, Recent Trends in FPGA Architectures and

Applications, 4th IEEE International Symposium on
Electronic Design, Test & Applications

[4] Nexys3™Board Reference Manual Revision, (April 3,

2013), www.digilentinc.com
[5] Spartan-3,Starter Kit Board User Guide, Chapter 5 VGA

Port, www.xilinx.com (online)

[6] Renuka A. Wasu, Vijay R. Wadhankar, Research Scholar,
Dept. of ENC, Agnihotri College of Engineering, Nagthana

Road, Wardha(M.S), India, H.O.D, Dept. of ENC,

Agnihotri College of Engineering, Nagthana Road, Wardha
(M.S), India, Design and Implementation of VGA

Controller on FPGA, International journal of Innovative

research in computer engineering.
[7] W. James MacLean, Department of Electrical & Computer

Engineering, University of Toronto, Toronto, Ontario, M5S

1A1, maclean@eecg.toronto.edu, Evaluation of the
Suitability An of FPGAs for Embedded Vision Systems

[8] Niveditha Yadav M, Yaseen Basha, Rohith S,

Venkateshkumar H, Algorithm to Design VGA controller
on FPGA Board

[8] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and

CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers,1999

[9] Video Graphics array interfacing through Artix-7 FPGA
 Mr. Naga V Satyanarayana Murthy, Asst. Professor,

department of ECE GNITC, Hyderabad-501506, India

[10] Image processing using FPGA. By: Sumitha Ajith
Saicharan, Bandarupalli and Mahesh Borgaonkar

http://web.cecs.pdx.edu/~mperkows/temp/KALMAN/ECE

590_ProjectReport[1].pdf

