
International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 3 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 145

Error Detection and Correction using Bloom

Filters
Battu Naveen

 1
, N.Pitcheswara Rao

 2

1PG Student, Electronics & Communication Engineering, DVR & Dr. HS MIC College of Tech., Kanchikacherla, A.P, India
 2Assistant Professor, Electronics & Communication Engineering, DVR & Dr. HS MIC College of Tech., Kanchikacherla,

A.P, India

Abstract: The Bloom filter a way of using hash

transforms to determine set member-ship. Bloom

filters find application wherever fast set membership

tests on large data sets are required. Such

applications include spell checking, differential file

updating, distributed network caches, and textual

analysis. It is a probabilistic method with a set error

rate. Errors can only occur on the side of inclusion, a

true member will never be reported as not belonging

to a set, but some non-members may be reported as

members. Bloom filters use hash transforms to

compute a vector (the filter) that is preventative of the

data set. Membership is tested by comparing the

results of hashing on the potential members to the

vector. In its simplest form the vector is composed of

N elements, each a bit. An element is set if and only if

some hash transform hashes to that location for some

key. Figure 2 shows such a filter with m = 4 hash

transforms and N = 8 bits.

Keywords —bloom filters, error, detection, correction

I. INTRODUCTION

Transient errors (also called soft errors, or single-

event upsets) caused by external radiation events have

become an important consideration for microprocessor

design. Recent research shows that the uncorrected

soft errors induce a failure rate higher than all the

reliability mechanisms combined. Following the

trends of shrinking feature sizes, low supply voltage

and high frequency, future microprocessors will

become increasingly vulnerable to soft errors.

Modern microprocessors typically employ

cache memories to bridge the speed gap between the

processor and the memory. Cache memories, however,

are particularly susceptible to particle strikes since

they consume a large fraction of on-chip area. In

addition, the leakage control techniques aggressively

used today for reducing cache leakage energy make

the cache reliability problem even more severe. The

accumulated charge from external particle strikes can

invert the state of the SRAM cell, which can be easily

propagated to the processor or lower-level memory,

resulting in erroneous computation or system crash.

Consequently, cache memories must be protected

against soft errors to ensure dependable computing.

A number of approaches exist to improve

cache reliability against soft errors, ranging from

information redundancy to space redundancy (N

Modular Redundancy). However, all these techniques

come at additional costs in performance, energy, area

or design time (which is called reliability cost in this

paper). For microprocessors or embedded systems that

are increasingly used in reliability-critical applications

but with stringent cost constraints, it is a necessity to

develop novel cost-effective fault tolerant techniques

or to select the most cost-effective mechanism to meet

the reliability goal. To achieve this goal, the first step

is to understand and measure cache vulnerability to

soft errors accurately and quantitatively. While over-

estimation can result in excessive protection and thus

higher reliability cost; under-estimation can lead to

inadequate protection and hence is useless.

While cache memories are susceptible to particle

strikes, not all soft errors occurred in caches can

propagate to other system components. For instance,

the soft errors occurred between the read and write

operations are automatically overlapped by the later

write operations, and thus do not affect other

components. To quantify this effect, we define

the cache vulnerability factor (CVF) to be the

probability that soft errors in cache memories can be

propagated to the processor or other memory

hierarchy. In this paper, we also propose an approach

to compute the CVF based on the cache line access

patterns. Using the cache vulnerability factor as a

reliability metric, we evaluate the degree of reliability

for a variety of cache memories, including the Ll I-

cache, the write-through data cache, the write-back

data cache and the L2 cache. Our result quantitatively

shows that the write-through data cache has the lowest

CVF and thus the highest reliability. Since write-back

data caches can usually achieve higher performance

than write-through caches (assuming the same clock

cycle time), we also propose two novel techniques to

reduce the CVF of write-back data caches without

impacting its high performance.

It is widely accepted that fault-inducing

particle strikes are randomly and uniformly

distributed, therefore, the probability that cache soft

errors can be propagated to the processor or other

components is equal to the average ratio that

instructions/data are exposed to the susceptible

intervals during the execution time, which is defined

in the Equation. In this Equation, is any cache block

that is loaded into the cache in study; and

the Susceptible Time represents the time intervals that

these blocks are susceptible to soft errors. Specifically,

for instruction caches, the Susceptible Time is the R-R

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 3 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 146

intervals. For a write-through data cache,

the Susceptible Time includes the R-R and W-R

intervals. For a write-back data cache, however,

the Susceptible Time includes the R-R, W-R and

Dirty-Replacement intervals. The Lifetime in

Equation represents the time interval between the time

that the block is loaded into the cache and the time it

is replaced. Since both the Susceptible

Time and Lifetime for each block can be easily

obtained from a cache or performance simulator, it

would be straightforward to calculate the CVF for

various cache memories.

The CVF indicates the probability that soft errors of

caches can impact other components. In other words,

the CVF accurately discloses the capability of cache

memories to mask soft errors by themselves without

affecting other components. Therefore, we can

develop new techniques to improve cache reliability

by reducing its CVF (i.e., by optimizing the access

patterns). Compared to conventional information

redundancy or space redundancy techniques, the CVF-

reduction techniques can improve cache reliability

without providing redundancy. The concept of CVF

even opens the avenues for software (e.g., compiler) to

enhance cache reliability against soft errors by

reordering the load/store operations and modifying the

access intervals.

In addition, with a metric to evaluate

cache reliability, it is possible to study the

tradeoffs between performance and reliability

quantitatively.

Figure 1.1 Access patterns (intervals) of cache lines (a) Read-Read

pattern (b) Read-Write pattern (c) Write-Read pattern (d) Write-

Write Pattern (e) Clean-Replacement pattern (f) Dirty-Replacement

pattern

Table 1.1 Configuration parameters of simulated

microprocessor

A differential file contains a batch of database

records to be updated. For performance reasons the

database is updated only periodically (i.e., midnight) or

when the differential file grows above a certain

threshold. However, in order to preserve integrity,

each reference/query to the database has to access the

differential file to see if a particular record is scheduled

to be updated. To speed-up this process, with little

memory and computational overhead, we need bloom

filters.

II. FAULT TOLERANT INTERLEAVED CACHE

A 4-way set associative cache efficient

bloom filter memory as shown in fig.2.3 can be

interleaved in a high-order fashion to make it fault

tolerant. 8-individual lines of the cache can be locally

addresses using 3 address lines. Here, the cache is

divided into 2-sets, two least significant address lines

(A1A0) can be used to point lines within a set.

Whereas, the most significant address line A2 is used

as a select line of a multiplexer which lets the output

data lines from the cache-sets pass through it. Here, if

any faulty condition occur in lines of set#0 then this

set can be removed from the cache structure simply by

changing the bit value of A2. But, high-order

interleaved cache is slower and the speed advantage of

cache memory is lost.

Fig. 2.1 4-way Set-associative Cache with 8 lines

http://www.ijettjournal.org/
http://ieeexplore.ieee.org.miman.bib.bth.se/xpls/icp.jsp?arnumber=7045291#fig_3

International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 3 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 147

Fig. 2.2. Cache replacement within 4-way set-

associative Cache

Fig. 2.3. High-order interleaved 4-way set-associative

Cache

If the cache memory is low-order interleaved then

it turns out to be a high speed one. But, low-order

interleaved structures are not modular in nature and

therefore, inherently fault-intolerant. Fig. 2.4 gives an

idea of low-order interleaved cache structure. The

cache is divided into 2-sets, two most significant

address lines (A2A1) can be used to point lines within

a set. Whereas, the least significant address line Ao is

used as a select line of a multiplexer which lets the

output data lines from the cache-sets pass through it.

Here, if any faulty condition occur in lines of set#0

then this set cannot be removed from the cache

structure by changing the bit value of Ao as it would

jeopardize the entire cache addressing. Therefore, a

fine grained approach is needed to remove the faulty

line(s) from the cache address space without

disturbing the contiguity and set-associativity of the

cache memory. Fig. 2.5 And fig. 2.6 depicts a clear

picture of the proposed structure in case of single and

multiple faults respectively within this low-order

interleaved cache structure. In fig. 2.5 as fault lies in

line with address 100, this cache line is bypassed and

the line addresses are reallocated in such a pattern that

it avoids any gap in address space. So, address 100

now points to the next non-faulty cache line which

was previously addresses by 101, address 101 points

to the next cache line (previous address 110) and so

on. The last cache line address points to the faulty

cache line and thus address 111 holds a bit sequence

in high impedance state (ZZZZZZZZ).

III. IMPLEMENTATION

Input is given as a cache text in the mat

lab .mat lab software assigns the memory as input to

the Xilinx blocks via system generator

Table 3.1 Input to the cache memory

Way 0 Way 1 Way 2 Way 3

00001000

00001001

00001010

00001011

00001100

00001101

00001110

00001111

00001001

00001011

00001001

00001000

00001111

00001010

00001100

00001101

00001010

00001101

00001000

00001100

00001110

00001011

00001111

00001101

00001000

00001110

00001011

00001101

00001011

00001001

00001111

00001100

Tag bits errors

Recently, a regular taxonomy for error

detection classifies errors as unobserved, detected

however unmanageable (DUE), or detected and

correctable errors. Single event upsets in logic path

will probably cause silent knowledge corruptions

(SDCs) in stark system. SDCs square measure

unobserved errors that cause incorrect machine results.

DUE happens once detected errors exceed error

protection capability. Tag arrays square measure

usually protected by error protection codes, like parity

or SEC–DED codes.

Transient errors in tag bits raise the chances

of pseudo hits, pseudo misses, replacement errors, and

multisite. Fig. 3(a) shows AN example of a pseudo hit.

A pseudo hit refers to a success that's really a miss

within the absence of a transient error. The pseudo hit

could lead the knowledge path to use the incorrectly

matched data. However, pseudo hit may be detected

by storing check bits (parity or SEC–DED codes) for

every row of tag bits.

 Once AN access for a given input ends up in

a success, the corresponding check bits of the tag bits

square measure browse out then compared with the

check bits computed from input tag bits. Any couple

denotes that the tag bits are corrupted and therefore

the hit is definitely a pseudo hit. A pseudo miss refers

to a miss that's really a success once there's no

transient error. Fig. 3(b) shows AN example of a

pseudo miss. Pseudo misses could cause {a

knowledge acknowledge an information} integrity

drawback in a very write-back data cache, that holds

dirty knowledge. A pseudo miss on dirty knowledge

triggers a fetch and use of stale knowledge from a

lower level. Justin case of a write-through cache,

however, a pseudo miss doesn't cause a retardant. It

simply incurs a cache miss.

http://www.ijettjournal.org/
http://ieeexplore.ieee.org.miman.bib.bth.se/xpls/icp.jsp?arnumber=7045291#fig_4
http://ieeexplore.ieee.org.miman.bib.bth.se/xpls/icp.jsp?arnumber=7045291#fig_5
http://ieeexplore.ieee.org.miman.bib.bth.se/xpls/icp.jsp?arnumber=7045291#fig_6
http://ieeexplore.ieee.org.miman.bib.bth.se/xpls/icp.jsp?arnumber=7045291#fig_5

International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 3 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 148

If tag bits are corrupted when their

corresponding cache line is changed, the changed

knowledge is written back to a wrong location once

write-back caches are used. Obviously, keep

knowledge in backing storage are going to be lost and

knowledge modification can't be mirrored in backing

storage. Kind this sort} of error type is classed as a

replacement error, as shown in Fig. 3(c). Additionally,

transient errors could lead to multisite errors once

caches ar associative. Fig. 3(d) shows associate degree

example of a multisite in an exceedingly four-way set

associative cache. At the most one tag bit should be

matched in one cache set, however it's doable that

multiple tag bits are matched in an exceedingly single

set thanks to a pseudo hit. Multi hit errors occur

sometimes, however their rate is exaggerated in

extremely associative caches .

Fig. 3.1. Effects of tag bits error. (a) Pseudo-hit. (b)

Pseudo-miss. (c) Replacement error

Table 3.2 Encoded pattern

Sti way 0 Sti way 1 Sti way 2 Sti way 3
0000000000100

0

0010100000100

1

0000000000101

0

0000000000101

1

0000000000110

0

0000000000110

1

0000000000111

0

0000000000111

1

0000000000100

1

0000000000101

1

0000000000100

1

0011110000100

0

0000000000111

1

0000000000101

0

0000000000110

0

0000000000110

1

0000000000101

0

0000000000110

1

0000000000100

0

0000000000110

0

0000000000111

0

0011110000101

1

0000000000111

1

0000000000110

1

0000000000100

0

0000000000111

0

0010100000101

1

0000000000110

1

0011110000101

1

0000000000100

1

0010100000111

1

0000000000110

0

From our experimental results, it's extremely

probable that very same tag bits exist in adjacent

cache sets. Fig. three shows locations of same tag bits

associate degree exceedingly in every four-way set

associative cache as an example. Once a cache line is

loaded, a similar tag bits as those of the fresh fetched

line square measure simply found in adjacent sets in

spite of associativity. This is often a consequence of

spatial neighbourhood of memory accesses. Even once

the cache isn't absolutely fetched, tag bit similarity

continues to be current to existing

Cache lines, since they're additionally fetched

from the memory supported the abstraction neck of

the words. Fig. 4 shows abstraction neck of the words

of tag bits thoroughly. During this example, eight-bit

main memory address Associate in nursing an eight-

entry direct-mapped cache area unit assumed. Once

information (a) area unit accessed and transferred to

the cache, the lower 3 bits of its address area unit used

as a cache set index and higher 5 bits area unit used as

tag bits [19]. As a result of the tag bits of memory

address, most of tag bits area unit a similar in adjacent

cache entries. Once concerning the information (a),

information (b) settled close to the information (a)

area unit accessed with a high likelihood due to the

abstraction neck of the woods. If each information (a)

and information (b) area unit cached, there are often 2

completely different information with a similar tag

bits within the cache memory.

Therefore, there exist several same tag bits

within the cache memory, albeit their information

values area unit completely different . The

fundamental plan of our theme is to take advantage of

same tag bits in adjacent sets to correct inaccurate tag

bits. By exploiting a similar tag bit values, we are able

to extremely enhance error correcting capability of tag

bits solely with negligible overheads. To achieve this

goal, further bits area unit needed to cypher location

data that points to an explicit location of a similar tag

bits in Associate in nursing higher or lower set. These

additional bits area unit referred to as same tag data

(STI) bits.

 STI bits include 3 logical parts: 1) a

legitimate bit; 2) a group location bit; and 3) approach

location bits. The valid bit indicates whether or not

bound tag bits have a similar bits in Associate in

Nursing adjacent set or not. The set location bit

denotes Associate in Nursing higher or lower set and

approach location bits represent a selected cache

approach that has same tag bits. The length of

approach location bits are often completely different

as a result of it depends on the associativity of caches.

For instance, a direct-mapped cache doesn't need the

approach location bits as a result of its one approach.

just in case of four-way set associative caches,

however, 2 approach location bits area unit needed to

contain approach data.

Simulink block diagram for encoding

Fig. 3.2 Encoder design

Simulink blocks diagram for correction.

Fig. 3.3 Corrector

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 51 Number 3 September 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 149

IV. CONCLUSION

With the trend of increasing soft error rate, it

is becoming important to provide error detection and

correction capability for hardware circuits, especially

for cache memories. However, most of the previous

techniques focus only on data bits without considering

tag bits corruption. Most tag bits in the data caches

have their replica in adjacent cache sets from our

experiments. We exploit this tag bits similarity against

transient errors. Faulty tag bits are simply replaced

with correct tag bits from the adjacent cache lines for

error correction.

Processor caches already play a critical role

in the performance of today’s computer systems. At

the same time, the data integrity of words coming out

of the caches can have serious consequences on the

ability of a program to execute correctly, or even to

proceed. The integrity checks need to be performed in

a time-sensitive manner to not slow down the

execution when there are no errors as in the common

case, and should not excessively increase the power

budget of the caches which is already high. A novel

solution to this problem by allowing in-cache

replication, wherein reliability can be enhanced

without excessively slowing down cache accesses or

requiring significant area cost increases. The

mechanism is fairly power efficient in comparison to

other alternatives as well. In particular, the solution

replicates data that is in active use within the cache

itself while evicting those that may not be needed in

the near future. Our experiments show that a large

fraction of the data read from the cache have replicas

available with this optimization.

References

[1] "Optimal false-positive-free bloom filter design for scalable
multicast forwarding", IEEE/ACM Transactions on

Networking, vol. 23, no. , pp. 1832-1845, Dec. 2015,

doi:10.1109/TNET.2014.2342155
[2] "The Bloom Paradox: When Not to Use a Bloom

Filter", IEEE/ACM Transactions on Networking, vol. 23, no. ,

pp. 703-716, June 2015, doi:10.1109/TNET.2014.2306060
[3] Jiangbo Qian, Qiang Zhu, Yongli Wang, "Bloom Filter

Based Associative Deletion", IEEE Transactions on Parallel

& Distributed Systems, vol. 25, no. , pp. 1986-1998, Aug.

2014, doi:10.1109/TPDS.2013.223

[4] Joao Trindade, Teresa Vazao, "A Performance Evaluation of

HRAN: A Hybrid Routing Protocol Using Bloom Filters for
Wireless Mobile Ad Hoc Networks", 2013 IEEE 12th

International Symposium on Network Computing and
Applications, vol. 00, no. , pp. 139-142, 2012,

doi:10.1109/NCA.2012.17

[5] Gang Wang, Jing Liu, Xiao-Guang Liu, Guang-Jun Xie, Jun
Lee, "K-Divided Bloom Filter Algorithm and Its

Analysis", Future Generation Communication and

Networking, vol. 01, no. , pp. 220-224, 2007,
doi:10.1109/FGCN.2007.157

[6] Yuh-Jzer Joung, An-Hsun Cheng, "Probabilistic file indexing

and searching in unstructured peer-to-peer networks", , vol.
00, no. , pp. 9-18, 2004, doi:10.1109/CCGrid.2004.1336543

[7] Hyesook Lim, Miran Shim, Jungwon Lee, "Name prefix

matching using bloom filter pre-searching", 2015 ACM/IEEE

Symposium on Architectures for Networking and

Communications Systems (ANCS), vol. 00, no. , pp. 203-204,

2015, doi:10.1109/ANCS.2015.7110141

Author’s Profile

BATTU NAVEEN is a PG student pursuing his M.Tech in

VLSI & ES specialization in DVR & Dr. HS MIC

College of Technology, Vijayawada.

N.PITCHESWARA RAO is working as Assistant

Professor in Dept. Of ECE in DVR & Dr. HS MIC

College of Technology, Vijayawada. He has published

several papers on his research work and guided so many

PG students.

http://www.ijettjournal.org/
https://www.computer.org/csdl/trans/nt/2015/06/06877748-abs.html
https://www.computer.org/csdl/trans/nt/2015/06/06877748-abs.html
https://www.computer.org/csdl/trans/nt/2015/06/06877748-abs.html
https://www.computer.org/csdl/trans/nt/2015/06/06877748-abs.html
https://www.computer.org/csdl/trans/td/2014/08/06589587-abs.html
https://www.computer.org/csdl/trans/td/2014/08/06589587-abs.html
https://www.computer.org/csdl/trans/td/2014/08/06589587-abs.html
https://www.computer.org/csdl/proceedings/fgcn/2007/3048/01/30480220-abs.html
https://www.computer.org/csdl/proceedings/fgcn/2007/3048/01/30480220-abs.html
https://www.computer.org/csdl/proceedings/fgcn/2007/3048/01/30480220-abs.html
https://www.computer.org/csdl/proceedings/ccgrid/2004/8430/00/84309.pdf
https://www.computer.org/csdl/proceedings/ccgrid/2004/8430/00/84309.pdf
https://www.computer.org/csdl/proceedings/ccgrid/2004/8430/00/84309.pdf
https://www.computer.org/csdl/proceedings/ccgrid/2004/8430/00/84309.pdf
https://www.computer.org/csdl/proceedings/ancs/2015/6633/00/07110141-abs.html
https://www.computer.org/csdl/proceedings/ancs/2015/6633/00/07110141-abs.html
https://www.computer.org/csdl/proceedings/ancs/2015/6633/00/07110141-abs.html
https://www.computer.org/csdl/proceedings/ancs/2015/6633/00/07110141-abs.html

