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Abstract: The Bloom filter a way of using hash 

transforms to determine set member-ship. Bloom 

filters find application wherever fast set membership 

tests on large data sets are required. Such 

applications include spell checking, differential file 

updating, distributed network caches, and textual 

analysis. It is a probabilistic method with a set error 

rate. Errors can only occur on the side of inclusion, a 

true member will never be reported as not belonging 

to a set, but some non-members may be reported as 

members. Bloom filters use hash transforms to 

compute a vector (the filter) that is preventative of the 

data set. Membership is tested by comparing the 

results of hashing on the potential members to the 

vector. In its simplest form the vector is composed of 

N elements, each a bit. An element is set if and only if 

some hash transform hashes to that location for some 

key. Figure 2 shows such a filter with m = 4 hash 

transforms and N = 8 bits. 
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I. INTRODUCTION 

Transient errors (also called soft errors, or single-

event upsets) caused by external radiation events have 

become an important consideration for microprocessor 

design. Recent research shows that the uncorrected 

soft errors induce a failure rate higher than all the 

reliability mechanisms combined. Following the 

trends of shrinking feature sizes, low supply voltage 

and high frequency, future microprocessors will 

become increasingly vulnerable to soft errors. 

Modern microprocessors typically employ 

cache memories to bridge the speed gap between the 

processor and the memory. Cache memories, however, 

are particularly susceptible to particle strikes since 

they consume a large fraction of on-chip area. In 

addition, the leakage control techniques aggressively 

used today for reducing cache leakage energy make 

the cache reliability problem even more severe. The 

accumulated charge from external particle strikes can 

invert the state of the SRAM cell, which can be easily 

propagated to the processor or lower-level memory, 

resulting in erroneous computation or system crash. 

Consequently, cache memories must be protected 

against soft errors to ensure dependable computing. 

A number of approaches exist to improve 

cache reliability against soft errors, ranging from 

information redundancy to space redundancy (N 

Modular Redundancy). However, all these techniques 

come at additional costs in performance, energy, area 

or design time (which is called reliability cost in this 

paper). For microprocessors or embedded systems that 

are increasingly used in reliability-critical applications 

but with stringent cost constraints, it is a necessity to 

develop novel cost-effective fault tolerant techniques 

or to select the most cost-effective mechanism to meet 

the reliability goal. To achieve this goal, the first step 

is to understand and measure cache vulnerability to 

soft errors accurately and quantitatively. While over-

estimation can result in excessive protection and thus 

higher reliability cost; under-estimation can lead to 

inadequate protection and hence is useless. 

While cache memories are susceptible to particle 

strikes, not all soft errors occurred in caches can 

propagate to other system components. For instance, 

the soft errors occurred between the read and write 

operations are automatically overlapped by the later 

write operations, and thus do not affect other 

components. To quantify this effect, we define 

the cache vulnerability factor (CVF) to be the 

probability that soft errors in cache memories can be 

propagated to the processor or other memory 

hierarchy. In this paper, we also propose an approach 

to compute the CVF based on the cache line access 

patterns. Using the cache vulnerability factor as a 

reliability metric, we evaluate the degree of reliability 

for a variety of cache memories, including the Ll I-

cache, the write-through data cache, the write-back 

data cache and the L2 cache. Our result quantitatively 

shows that the write-through data cache has the lowest 

CVF and thus the highest reliability. Since write-back 

data caches can usually achieve higher performance 

than write-through caches (assuming the same clock 

cycle time), we also propose two novel techniques to 

reduce the CVF of write-back data caches without 

impacting its high performance. 

It is widely accepted that fault-inducing 

particle strikes are randomly and uniformly 

distributed, therefore, the probability that cache soft 

errors can be propagated to the processor or other 

components is equal to the average ratio that 

instructions/data are exposed to the susceptible 

intervals during the execution time, which is defined 

in the Equation. In this Equation, is any cache block 

that is loaded into the cache in study; and 

the Susceptible Time represents the time intervals that 

these blocks are susceptible to soft errors. Specifically, 

for instruction caches, the Susceptible Time is the R-R 
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intervals. For a write-through data cache, 

the Susceptible Time includes the R-R and W-R 

intervals. For a write-back data cache, however, 

the Susceptible Time includes the R-R, W-R and 

Dirty-Replacement intervals. The Lifetime in 

Equation represents the time interval between the time 

that the block is loaded into the cache and the time it 

is replaced. Since both the Susceptible 

Time and Lifetime for each block can be easily 

obtained from a cache or performance simulator, it 

would be straightforward to calculate the CVF for 

various cache memories. 

 

The CVF indicates the probability that soft errors of 

caches can impact other components. In other words, 

the CVF accurately discloses the capability of cache 

memories to mask soft errors by themselves without 

affecting other components. Therefore, we can 

develop new techniques to improve cache reliability 

by reducing its CVF (i.e., by optimizing the access 

patterns). Compared to conventional information 

redundancy or space redundancy techniques, the CVF-

reduction techniques can improve cache reliability 

without providing redundancy. The concept of CVF 

even opens the avenues for software (e.g., compiler) to 

enhance cache reliability against soft errors by 

reordering the load/store operations and modifying the 

access intervals. 

In addition, with a metric to evaluate 

cache reliability, it is possible to study the 

tradeoffs between performance and reliability 

quantitatively.  

 

Figure 1.1 Access patterns (intervals) of cache lines (a) Read-Read 

pattern (b) Read-Write pattern (c) Write-Read pattern (d) Write-

Write Pattern (e) Clean-Replacement pattern (f) Dirty-Replacement 

pattern 

 

Table 1.1 Configuration parameters of simulated 

microprocessor 

 

A differential file contains a batch of database 

records to be updated.  For performance reasons the 

database is updated only periodically (i.e., midnight) or 

when the differential file grows above a certain 

threshold.  However, in order to preserve integrity, 

each reference/query to the database has to access the 

differential file to see if a particular record is scheduled 

to be updated.  To speed-up this process, with little 

memory and computational overhead, we need bloom 

filters. 

II. FAULT TOLERANT INTERLEAVED CACHE 

A 4-way set associative cache efficient 

bloom filter memory as shown in fig.2.3 can be 

interleaved in a high-order fashion to make it fault 

tolerant. 8-individual lines of the cache can be locally 

addresses using 3 address lines. Here, the cache is 

divided into 2-sets, two least significant address lines 

(A1A0) can be used to point lines within a set. 

Whereas, the most significant address line A2 is used 

as a select line of a multiplexer which lets the output 

data lines from the cache-sets pass through it. Here, if 

any faulty condition occur in lines of set#0 then this 

set can be removed from the cache structure simply by 

changing the bit value of A2. But, high-order 

interleaved cache is slower and the speed advantage of 

cache memory is lost. 

 

Fig. 2.1 4-way Set-associative Cache with 8 lines 
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Fig. 2.2. Cache replacement within 4-way set-

associative Cache 

 

Fig. 2.3. High-order interleaved 4-way set-associative 

Cache 

If the cache memory is low-order interleaved then 

it turns out to be a high speed one. But, low-order 

interleaved structures are not modular in nature and 

therefore, inherently fault-intolerant. Fig. 2.4 gives an 

idea of low-order interleaved cache structure. The 

cache is divided into 2-sets, two most significant 

address lines (A2A1) can be used to point lines within 

a set. Whereas, the least significant address line Ao is 

used as a select line of a multiplexer which lets the 

output data lines from the cache-sets pass through it. 

Here, if any faulty condition occur in lines of set#0 

then this set cannot be removed from the cache 

structure by changing the bit value of Ao as it would 

jeopardize the entire cache addressing. Therefore, a 

fine grained approach is needed to remove the faulty 

line(s) from the cache address space without 

disturbing the contiguity and set-associativity of the 

cache memory. Fig. 2.5 And fig. 2.6 depicts a clear 

picture of the proposed structure in case of single and 

multiple faults respectively within this low-order 

interleaved cache structure. In fig. 2.5 as fault lies in 

line with address 100, this cache line is bypassed and 

the line addresses are reallocated in such a pattern that 

it avoids any gap in address space. So, address 100 

now points to the next non-faulty cache line which 

was previously addresses by 101, address 101 points 

to the next cache line (previous address 110) and so 

on. The last cache line address points to the faulty 

cache line and thus address 111 holds a bit sequence 

in high impedance state (ZZZZZZZZ). 

III. IMPLEMENTATION 

Input is given as a cache text in the mat 

lab .mat lab software assigns the memory as input to 

the Xilinx blocks via system generator 

Table 3.1 Input to the cache memory 

Way 0 Way 1 Way 2 Way 3 

00001000 

00001001 

00001010 

00001011 

00001100 

00001101 

00001110 

00001111 

00001001 

00001011 

00001001 

00001000 

00001111 

00001010 

00001100 

00001101 

00001010 

00001101 

00001000 

00001100 

00001110 

00001011 

00001111 

00001101 

00001000 

00001110 

00001011 

00001101 

00001011 

00001001 

00001111 

00001100 

 

Tag bits errors 

Recently, a regular taxonomy for error 

detection classifies errors as unobserved, detected 

however unmanageable (DUE), or detected and 

correctable errors. Single event upsets in logic path 

will probably cause silent knowledge corruptions 

(SDCs) in stark system. SDCs square measure 

unobserved errors that cause incorrect machine results. 

DUE happens once detected errors exceed error 

protection capability. Tag arrays square measure 

usually protected by error protection codes, like parity 

or SEC–DED codes. 

Transient errors in tag bits raise the chances 

of pseudo hits, pseudo misses, replacement errors, and 

multisite. Fig. 3(a) shows AN example of a pseudo hit. 

A pseudo hit refers to a success that's really a miss 

within the absence of a transient error. The pseudo hit 

could lead the knowledge path to use the incorrectly 

matched data. However, pseudo hit may be detected 

by storing check bits (parity or SEC–DED codes) for 

every row of tag bits. 

 Once AN access for a given input ends up in 

a success, the corresponding check bits of the tag bits 

square measure browse out then compared with the 

check bits computed from input tag bits. Any couple 

denotes that the tag bits are corrupted and therefore 

the hit is definitely a pseudo hit. A pseudo miss refers 

to a miss that's really a success once there's no 

transient error. Fig. 3(b) shows AN example of a 

pseudo miss. Pseudo misses could cause {a 

knowledge acknowledge an information} integrity 

drawback in a very write-back data cache, that holds 

dirty knowledge. A pseudo miss on dirty knowledge 

triggers a fetch and use of stale knowledge from a 

lower level. Justin case of a write-through cache, 

however, a pseudo miss doesn't cause a retardant. It 

simply incurs a cache miss. 
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If tag bits are corrupted when their 

corresponding cache line is changed, the changed 

knowledge is written back to a wrong location once 

write-back caches are used. Obviously, keep 

knowledge in backing storage are going to be lost and 

knowledge modification can't be mirrored in backing 

storage. Kind this sort} of error type is classed as a 

replacement error, as shown in Fig. 3(c). Additionally, 

transient errors could lead to multisite errors once 

caches ar associative. Fig. 3(d) shows associate degree 

example of a multisite in an exceedingly four-way set 

associative cache. At the most one tag bit should be 

matched in one cache set, however it's doable that 

multiple tag bits are matched in an exceedingly single 

set thanks to a pseudo hit. Multi hit errors occur 

sometimes, however their rate is exaggerated in 

extremely associative caches . 

 

Fig. 3.1. Effects of tag bits error. (a) Pseudo-hit. (b) 

Pseudo-miss. (c) Replacement error 

 

Table 3.2 Encoded pattern 

Sti way 0 Sti way 1 Sti way 2 Sti way 3 
0000000000100

0 

0010100000100

1 

0000000000101

0 

0000000000101

1 

0000000000110

0 

0000000000110

1 

0000000000111

0 

0000000000111

1 

0000000000100

1 

0000000000101

1 

0000000000100

1 

0011110000100

0 

0000000000111

1 

0000000000101

0 

0000000000110

0 

0000000000110

1 

0000000000101

0 

0000000000110

1 

0000000000100

0 

0000000000110

0 

0000000000111

0 

0011110000101

1 

0000000000111

1 

0000000000110

1 

0000000000100

0 

0000000000111

0 

0010100000101

1 

0000000000110

1 

0011110000101

1 

0000000000100

1 

0010100000111

1 

0000000000110

0 

 

From our experimental results, it's extremely 

probable that very same tag bits exist in adjacent 

cache sets. Fig. three shows locations of same tag bits 

associate degree exceedingly in every four-way set 

associative cache as an example. Once a cache line is 

loaded, a similar tag bits as those of the fresh fetched 

line square measure simply found in adjacent sets in 

spite of associativity. This is often a consequence of 

spatial neighbourhood of memory accesses. Even once 

the cache isn't absolutely fetched, tag bit similarity 

continues to be current to existing 

Cache lines, since they're additionally fetched 

from the memory supported the abstraction neck of 

the words. Fig. 4 shows abstraction neck of the words 

of tag bits thoroughly. During this example, eight-bit 

main memory address Associate in nursing an eight-

entry direct-mapped cache area unit assumed. Once 

information (a) area unit accessed and transferred to 

the cache, the lower 3 bits of its address area unit used 

as a cache set index and higher 5 bits area unit used as 

tag bits [19]. As a result of the tag bits of memory 

address, most of tag bits area unit a similar in adjacent 

cache entries. Once concerning the information (a), 

information (b) settled close to the information (a) 

area unit accessed with a high likelihood due to the 

abstraction neck of the woods. If each information (a) 

and information (b) area unit cached, there are often 2 

completely different information with a similar tag 

bits within the cache memory.  

Therefore, there exist several same tag bits 

within the cache memory, albeit their information 

values area unit completely different . The 

fundamental plan of our theme is to take advantage of 

same tag bits in adjacent sets to correct inaccurate tag 

bits. By exploiting a similar tag bit values, we are able 

to extremely enhance error correcting capability of tag 

bits solely with negligible overheads. To achieve this 

goal, further bits area unit needed to cypher location 

data that points to an explicit location of a similar tag 

bits in Associate in nursing higher or lower set. These 

additional bits area unit referred to as same tag data 

(STI) bits. 

 STI bits include 3 logical parts: 1) a 

legitimate bit; 2) a group location bit; and 3) approach 

location bits. The valid bit indicates whether or not 

bound tag bits have a similar bits in Associate in 

Nursing adjacent set or not. The set location bit 

denotes Associate in Nursing higher or lower set and 

approach location bits represent a selected cache 

approach that has same tag bits. The length of 

approach location bits are often completely different 

as a result of it depends on the associativity of caches. 

For instance, a direct-mapped cache doesn't need the 

approach location bits as a result of its one approach. 

just in case of four-way set associative caches, 

however, 2 approach location bits area unit needed to 

contain approach data. 

Simulink block diagram for encoding  

 
Fig. 3.2 Encoder design 

Simulink blocks diagram for correction. 

 

 
Fig. 3.3 Corrector 
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IV. CONCLUSION 

With the trend of increasing soft error rate, it 

is becoming important to provide error detection and 

correction capability for hardware circuits, especially 

for cache memories. However, most of the previous 

techniques focus only on data bits without considering 

tag bits corruption. Most tag bits in the data caches 

have their replica in adjacent cache sets from our 

experiments. We exploit this tag bits similarity against 

transient errors. Faulty tag bits are simply replaced 

with correct tag bits from the adjacent cache lines for 

error correction. 

Processor caches already play a critical role 

in the performance of today’s computer systems. At 

the same time, the data integrity of words coming out 

of the caches can have serious consequences on the 

ability of a program to execute correctly, or even to 

proceed. The integrity checks need to be performed in 

a time-sensitive manner to not slow down the 

execution when there are no errors as in the common 

case, and should not excessively increase the power 

budget of the caches which is already high. A novel 

solution to this problem by allowing in-cache 

replication, wherein reliability can be enhanced 

without excessively slowing down cache accesses or 

requiring significant area cost increases. The 

mechanism is fairly power efficient in comparison to 

other alternatives as well. In particular, the solution 

replicates data that is in active use within the cache 

itself while evicting those that may not be needed in 

the near future. Our experiments show that a large 

fraction of the data read from the cache have replicas 

available with this optimization. 
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