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Abstract In this study, loss of stability of the 

truncated conical shell structures under axial 

loading was investigated. Analytical calculations 

were made by means of analytical expressions 

derived from the linear theory. These expressions 

are presented in previous studies in the literature 

and so in ECCS regulations. A numerical study was 

performed with two finite element package 

programs; Cosmos/M and Abaqus. In all numerical 

simulations, nonlinear geometry effect was 

considered (GNA – Geometrically nonlinear 

analysis). Conical shells with a semi-vertex angle in 

the range of 10-80° and shell thickness in the range 

of 0.6-1mm were modeled. All results from both 

analytical and numerical studies were compared. 

Furthermore, an empirical expression which 

evaluates the load carrying capacity of the presented 

conical shells was exhibited in terms of the 

dimensionless parameter . 
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I. INTRODUCTION  

Conical shell structures have a very common 

usage in the industry such as space crafts, robots, 

shelters, domes, and tanks. Therefore, there are 

studies performed by many authors about standard 

shell structures consist of components which have an 

ordinary shape such as completely cylindrical shells, 

spheres and torus or conical shells with the semi 

vertex angle lower than 65° in the current literature. 

Since the membrane stress is exclusively dominated 

by this type structures, theoretical approaches can be 

used to obtain load carrying capacity of a structure. 

Also updated standards and recommendations 

provide useful approaches to obtain stability of the 

conical shells with the semi vertex angle which is 

lower than 65 degrees [1] and [2]. Nevertheless, the 

standard methods are not applicable for the shells 

which have semi vertex angle higher than 65° or a 

flexible boundary ring. The rules included in the 

recommendations can only be applied on conical 

shells which have clamped edges or edges with a 

stiff ring.  

In order to obtain the elastic stability of 

unstiffened conical shells under compressive loading, 

Seide [3] has approached the problem analytically 

and developed an expression based on Donnell type 

shell theory as a classical solution for axisymmetric 

buckling of conical shells. Seide’s equation may be 

written as: 

  (1) 

where: 

  Critical load of the conical shell, [N] 

  Modulus of elasticity. [MPa]  

  Semi-vertex angle. [rad] 

  Critical load of the cylinder. [N] 

  Poission’s ratio. 

  Shell thickness. [mm] 

 

The stability of truncated conical shells subjected 

to axial compression has been studied by many 

prominent authors.  

Weingarten et. al. [4] studied the stability of 

cylindrical and conical shells under axial 

compression experimentally. Experiments were 

performed using specimens made of both Mylar 

polyester and steel. Results of the study indicated 

that buckling coefficient varied with the radius-to-

thickness ratio. Also, lower bound curves for 

buckling coefficients were given.  

Tani and Yamaki [5] studied the elastic stability 

of truncated conical shells under axial compression. 

Unlike previous studies, authors analyzed the 

problem under four sets of boundary conditions 

including both simply supported and clamped cases. 

After detailed calculations and clarification of the 

correlations to the buckling of equivalent cylindrical 

shells, critical load estimation for conical shells was 

expressed. 

Pariatmono and Chryssanthopoulos [6] 

investigated the buckling of conical shells under 

axial compression in terms of critical buckling load 

and mode shapes. The study included numerical 

solutions of the problem with both simply supported 

and clamped boundary conditions. With the 

adaptation of F-W method, two different 

displacement functions were used to obtain and 

compare the results. As a result of the study, 
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numerical difficulties at the simply supported case 

were reduced by introducing clamped boundary 

conditions. Clamping also changed buckling mode at 

both near the boundaries and center of the cone.  

Marios et al [7] studied stiffened cones and some 

specific characteristics of conical shells in order to 

obtain detailed information about the particular case. 

Finite element analysis was used for evaluation 

critical elastic response and imperfection sensitivity 

in order to develop a design approach for stringer-

stiffened cones subjected to axial compression. 

According to the current recommendations of 

European Shell Buckling Recommendations (ECCS), 

proposals for improvement of the design of both 

unstiffened and stiffened cones were made.  

Thinvongpituk and El-Sobky [8] investigated the 

buckling behavior of conical shells under axial 

loading both numerically and experimentally. Finite 

element analyses were performed with commercial 

package program Abaqus and experiments were 

carried out under quasi-static loading with three 

different end conditions: simple support, top 

constraint, and base constraint. It was found that 

type of the end constraint has a great effect on the 

buckling load of conical shell.  

Jabareen and Sheinman [9] examined the effect of 

the pre-buckling nonlinearity on the bifurcation 

point of a conical shell. Three shell theories: 

Donnell’s, Sanders’ and Timoshenko’s have been 

used as the basis. Authors developed a computer 

code to examine the effect of the pre-buckling 

nonlinearity on the buckling of the shell under axial 

compression. It was obtained that for structures 

which have a softening behavior have a lower 

buckling load. This case is caused by the pre-

buckling nonlinearity when compared to the 

classical case.  

Blachut et al [10] studied on the buckling of 

conical shells subjected to axial compression, lateral 

pressure and hydrostatic pressure both numerically 

and experimentally. Authors performed experiments 

on five laboratory scale models and obtained a good 

proximity between numerical estimations of collapse 

and axisymmetric bifurcation buckling. 

Ifayefunmi and Blachut [11] investigated the 

elastic-plastic buckling of short and relatively thick 

unstiffened truncated conical shells under axial 

compression and external pressure. Thirteen 

nominally identical laboratory samples under 

various loading conditions were used for the 

experiments. Authors gained a good approximation 

between experimental results and numerical 

predictions and also another comparison study, 

between predictions of failure loads obtained from 

ASME code 2286-2 and ECCS design rules, was 

performed.  

Ifayefunmi [12] studied plastic buckling of thick 

steel conical shells under combined loading of axial 

compression and internal pressure. According to the 

ASME case code 2286-2, numerical calculations and 

experiments were accomplished to validate the rule 

both experimentally and numerically. As a result of 

the present study, it is emphasized that concept of 

equivalent cylinder approach for thick cones under 

combined loading have unstable results and it is 

unsafe for design purposes. 

In this study, loss of stability of truncated conical 

shell structures under axial loading was investigated. 

A numerical approach was conducted for the 

problem and compared with the equation (1) derived 

by Seide [1] by means of the linear theory. The 

equation is taken into consideration for the case of 

axisymmetric buckling of truncated conical shells 

subjected to axial loading. In this numerical 

approach, geometrical nonlinearities were 

considered in order to compare with the linear 

formulation. Conical shells with semi-vertex angles 

between 10° and 80° were modeled and analyzed 

with two different finite element package program 

COSMOS/M and ABAQUS. Moreover, the 

influence of the thicknesses of conical shells on the 

stability was investigated in the range of 0.6mm and 

1mm. 

II. MATERIAL AND METHOD 

Numerical simulations were performed using 

two different commercial finite element package 

programs: Cosmos/M and Abaqus. Basic sketch with 

two different views (front view and top view) for the 

models of conical shells are given in Figure 1 with 

geometrical parameters.  

Geometrical parameters as seen in Figure 1 are 

named; : upper radius,  bottom radius, : height 

of the stiff pipe, : conical shell length, : 

equivalent cylinder radius, : angle of lower edge, 

: semi-vertex angle, : shell thickness and : 

axial load. Upper radius “ ” and bottom radius “ ” 

were defined as 50 mm and 250 mm, respectively. 

The height of the relatively stiff pipe “h”, located at 

the top of the truncated conical shell was assigned as 

10 mm.  

In the present study, analytical calculations were 

made using equivalent cylinder radius   which is 

individually calculated by recommendations stated 

in “Buckling of steel shells European design 

recommendations (ECCS)”. According to the 

aforementioned recommendation, it is needed to be 

determined either short or long conical shell based 

on the equations given below [1]. 

   (2) 

where is the semi vertex angle of conical shell in 

[Rad], 

     (3) 

if, ,, it means this structure is a short conical 

shell, equivalent radius is; 
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Fig. 1 Front (on the left) and top view (on the right) of the conical shell. 

     (4) 

if,  , it means this 

structure is a long conical shell and the equivalent 

radius  is;  

    (5) 

According to the abovementioned equations taken 

from ECCS, for the current case, all of the models 

were determined as long conical shells and 

equivalent cylinder radius values were calculated 

using equation (5). Calculated equivalent cylinder 

radius   values were used to calculate the  

dimensionless parameter. The range of the shell 

thickness  values and dimensionless the 

parameter  values are presented in Table 1 

for each individual semi vertex angle . 

 
Tab. 1 Variable geometrical parameters of the models. 

 

Semi Vertex 

Angle  

[°] 

Shell Thickness 
 

[mm] 

 
[-] 

10 0.6 – 1 177 – 295 

20 0.6 – 1 182 – 304 

30 0.6 – 1 194 – 324 

40 0.6 – 1 215 – 359 

50 0.6 – 1 252 – 420 

60 0.6 – 1 317 – 530 

70 0.6 – 1 455 – 759 

80 0.6 – 1   879 – 1465 

 

 
Fig. 2 Basic truncated conical shell geometry and notations [7]. 

In all models, upper and lower circular ends of 

the conical shells were constrained in the radial 

direction. In other words, these constraints can be 

defined as below using coordinates given in Figure 2. 

Boundary conditions assigned on the models are also 

shown in Figure 3 in detail. 

          (6) 

 

The material used for the models was considered 

as S235 steel assumed to have a linear and isotropic 

material behavior. Properties of the material in 

analytical and numerical analysis are; modulus of 

elasticity “ ” of 200 GPa, Poisson’s ratio “ ” of 0.3, 

and mass density “ ” of .  

In all simulations, geometrical nonlinearity was 

taken into consideration, so large displacement 

formulation was enabled in both FEA solutions. 

 

  
Fig. 3 Schematic representation of boundary conditions of numeric models.
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All analyses were performed with a mesh 

consisting of quadrilateral shell elements. These 

elements are called “SHELL4” [13] in Cosmos/M 

and “S4” [14] in Abaqus. Mesh structures of the 

model with a 60° of semi-vertex angle are illustrated 

in Figure 4. 

 

 

 

 

 

III. RESULTS AND DISCUSSION 

Numerical analyses were carried out from the 

beginning to the point at which the loss of stability 

occurs under an increasing axial load applied on top 

of the edges of conical shells. This state is illustrated 

in Figure 5 as a force vs. end-shortening curve for 

one case (  and ) from the data 

obtained with both Cosmos/M and Abaqus. All data 

were recorded from a reference point placed on the 

top of the conical shell.  

 

 

  
Fig. 4 Mesh structure of the models in Cosmos/M (on the left) and Abaqus (on the right).

 
Fig. 5 F – End-shortening curve obtained from Abaqus for 

 and . 

It is observed that geometric stiffness of the 

conical shell reduces with increasing load. When the 

slope of the F vs. end-shortening curve becomes 

zero, the structure loses its structural stability and 

the load carrying capacity of structure decreases 

correspondingly. Accordingly, it is seen that during 

the analysis after the loss of stability point, applied 

load exhibits a decreasing trend while end-

shortening is still increasing. Deformed shapes of the 

same structure are also illustrated in Figure 6 at the 

nonlinear collapse point. 

Axial load values and deformation shapes were 

seemed to be very consistent in Cosmos/M and 

Abaqus. For the structure depicted in Figures 5 and 6, 

at the loading of the loss of stability point 

( , four waves were appeared along the 

top and bottom edge of the shell geometry with a 

total end shortening of . These waves are 

caused by the axisymmetric loss of stability of the 

structure and have a circumferential pattern along 

the shell geometry. Analyses for all semi-vertex 

angles and shell thicknesses were performed and the 

values of limit loads are plotted in Figure 7 and 8.

 
Fig. 6 F – Deformed shapes from Cosmos/M (on the left) and Abaqus (on the right). (Deformation scale factor = 20)

The results taken from both package programs 

have a good match in the range of 2% deviation with 

respect to the nonlinear collapse load. After a 

parametric study, it is obvious that the limit load is 

directly related to shell thickness and inversely 

related to the semi-vertex angle. 

 

Fig.7 GNA results obtained from Cosmos/M 
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A change in the semi-vertex angle of the 

structure results a change in the components of the 

load applied on the conical shell. Increasing semi-

vertex angle causes a decrease in the meridional load 

component (Fu) and an increase in the load attempts 

to bend the side surface of the conical shell inward 

(Fw). Aforementioned forces are illustrated in Figure 

9 with necessary notations. 

 
Fig. 8 GNA results obtained from Abaqus 

 
Fig. 9 Force components of the applied load affected on the 

conical shell structure 

Conical shell structures are known to be more 

resistant to membrane stresses. Because of the 

increase in the load which causes the bending stress, 

load carrying capacity of the structure decreases 

with increasing semi-vertex angle. Also the load 

component meridional to the side surface of the 

conical shell (Fu) which causes the membrane stress 

on the structure decreases. This case leads to 

decrease the number of axisymmetric waves along 

the conical shell at the point of loss of stability. A 

number of the waves propagated on the structures 

decreased with increasing semi-vertex angle in all 

analyses.  

 
Fig. 10 F vs.  curves for the results of Cosmos/M 

A dimensionless parameter is 

introduced as a function of geometrical parameters 

( , , , etc.) of the conical shell structure. 

When the dimensionless parameter  is 

identical at different semi-vertex angles and shell 

thicknesses, then their limit loads also become 

equal.

Fig. 11 F vs.  curves for the results of Abaqus 

The limit loads from FEA can be fitted with a 

power equation with a maximum deviation of 8%. 

Power equation in a relation with limit load values 

can be written as; 

  (7) 

As seen in the equation (7), in order to evaluate 

the load carrying capacity of the conical shells 

proposed in this study, it is enough to have 

information about the equivalent radius  and the 

shell thickness .   

Based on the results and as seen in Figure 10 and 

11, the dimensionless parameter has an 

inverse proportionality with the load carrying 

capacity of the structure. When the value of this 

parameter goes to zero, structure becomes to behave 

like infinitely stiff and increasing values of the 

dimensionless parameter causes the load carrying 

capacity of the structure to approach zero 

asymptotically. 

Results obtained from analyses performed with 

two different commercial finite element package 

programs were compared to the values calculated 

with the analytical expression (equation 1) 

developed by Seide [3]. The main purpose of this 

comparison was to assess the effect of the 

geometrical nonlinearities on the load carrying 

capacity of conical shells. The difference between 

analytical calculations and numerical simulations are 

plotted in Figure 12. 

 
Fig. 12 Difference between numerical and analytical results. 

The differences between the analytical and 

numerical results are up to 14% for different semi-

vertex angles and shell thicknesses. Average 

differences of the results were calculated up to 9% 

as seen in Figure 12. The equation proposed by 

Seide [1] gives similar results with numerical 

simulations for   which are named as 

“standard structure” in ECCS regulations. However, 

for larger  attaining high geometrical nonlinearity 

influences, implementing of critical load expression 
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(equation 1) increases the percentage of error 

between analytical and numerical results. Load 

carrying capacities calculated by analytical method 

observed to be higher than those of numerical 

method. 

IV. CONCLUSIONS 

In the present study, the effect of semi-vertex 

angle and shell thicknesses on the load carrying 

capacity of truncated conical shells were 

investigated. Also, critical load values of the conical 

shells were calculated using the equation derived by 

Seide [1]. All results obtained from analytical 

calculations and numerical simulations (GNA- 

geometrically nonlinear analysis) were compared to 

each other. Main concluding remarks obtained from 

the current study are listed below.  

The load carrying capacity of a truncated conical 

shell has a direct proportionality with the shell 

thickness and an inverse proportionality with the 

semi-vertex angle. 

For the structures investigated in this study, 

aforementioned analytical expression (equation 1) 

gave consistent results for . Besides, for 

higher semi-vertex angles , the maximum 

difference between the results was calculated  14%  

depending on the shell thicknesses and semi-vertex 

angles.  

In accordance with the numerical simulations, 

load carrying capacity of the conical shells can be 

represented by an empirical expression. This 

expression is based on the dimensionless parameter 

 and characterised by a power function. 
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