
International Journal of Engineering Trends and Technology (IJETT) – Volume 52 Number 3 October 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 142

A Simulation Study of an Elevator Control

System using Digital Logic

Md. Mohsinur Rahman Adnan
#1

, Md. Zunaid Sikder
#2

, Mohammed Mushfiquzzoha
#3

, Mahdi

Zulfikar
#4

#1
Department of EEE, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh

#2,3,4
Department of EEE, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh

Abstract—This work presents a simulation study of

elevator control of an eight storied building. The

total system was built using digital logic Integrated

Circuits (ICs). The probable flow of events

associated with movement of an elevator had been

inspected and used to create a flow chart for the

events. This flow chart had been used to create the

logic to control the elevator and finally had been

transformed into a digital electronic circuit. This

electronic circuit consisted of several sub circuits

which carried out sub routine tasks to ensure smooth

operation of the elevator as per the flow chart.

Simulation had been carried out in Proteus software.

The proposed algorithm is easily scalable to “N”

floor elevator system.

Keywords— Elevator, Control, Digital Logic,

Proteus (ISIS Professional version 7.8 SP2).

I. INTRODUCTION

Multi-storied buildings now-a-days generally have

elevator systems with them. These elevator systems

need precise control to carry out the task assigned to

them. Some previous research papers have already

addressed this problem [1][2][3]. But those control

approaches have used Programmable Logic Circuit

(PLC) or microcontroller based logic control. Very

few works had been carried out that created logic

equations to be implemented by basic gates and

available Integrated Circuits (ICs) in a digital logic

circuit [4]. In this work such an approach had been

taken; no PLC or microcontroller based coding were

incorporated, rather the total system was built using

digital logic ICs. Moreover focus had been given to

develop an algorithm for elevator control system

which can be used to implement an arbitrary “N”

floor building‟s elevator control. For demonstration

purpose, “N” had been taken equal to 8 in this work.

So, calculations of only 3 bits, denoting from 7
th

Floor (111) to ground floor (000), had been

necessary to control the operation.

II. PROBLEM DEFINITION

A system had to be designed that will count form

0 to N and N to 0 in an up-down manner

continuously. But there will be a time delay at some

numbers taken as system inputs; these numbers will

indicate the floors where there are calls for the

elevator. A special time delay, which indicates

elevator stopping and passengers getting in or out at

that floor, will be available only at those specified

numbers. Let the number in display be 0 (Initial

Condition, can be varied). This means the elevator is

now at Ground Floor (GF). Let a call occurs at some

i-th floor. As soon as the call occurs the lift will start

upward counting 0-1-2-3-4-5 -.... –N till it reaches

that i-th floor. Now let‟s assume as soon as the

elevator has served the call at i, calls have occurred

at i-j and i+j floors simultaneously. If the lift has

been going upward it will go on moving to i+j- th

floor, serve the call, and then change its direction to

come back at i-j-th floor to serve call. For initially

downward moving elevator, i-j th floor‟s call serving

will happen first. After all the calls had been served,

if no more call occurs, the elevator will be waiting

at its last served floor and will be searching both

way(up/down) for new calls.

III. OPERATION PRINCIPLE

The operation principle can be described in

following steps. The system should first collect the

current i-th floor‟s position relative to the building

structure. Then the elevator should check if there is

any call at current i-th floor. If there is, the elevator

should serve this call and flush memory for the call

to avoid double serving. Then, depending on the

ongoing movement direction i.e. upward or

downward, the elevator will search for calls in

higher (i++) or lower (i--) floors. If no call is found

in current movement direction it should change its

moving direction and search for calls in opposite

way. But if there is call found in already moving

direction, the elevator should increase floor count by

1 and search for call in the i+1-th floor (in case of

upward movement) or should decrease floor count

by 1 and search for call in the i-1-th floor (in case of

downward movement) and thus go on repeating till

the highest or lowest floor with a call is reached and

served. Then the elevator should change direction

and start moving the opposite way serving calls.

Continuous direction change and searching for calls

will happen if at any moment of system‟s operation

the elevator has no more call to serve. The total

process can be seen in the flow chart of fig 1.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 52 Number 3 October 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 143

Fig 1: Flowchart for Controlling Elevator System.

IV. DESIGNING SUB-CIRCUITS

A. Up Counter

 It has the operation principle of adding 1 to its

input. The truth table should look like this:

Table I: Truth Table for Up Counter

Inspecting the truth table we get the bitwise input

output relationships:

𝑂1 = 𝐶 ∗ 𝐼1 + 𝐶 ∗ 𝐼1 ; Where C=1.

𝑂2 = 𝐶 ∗ 𝐼1 ∗ 𝐼2 + 𝐶 ∗ 𝐼1 ∗ 𝐼2 ; Where C=1.

𝑂3 = 𝐶 ∗ 𝐼1 ∗ 𝐼2 ∗ 𝐼3 + 𝐶 ∗ 𝐼1 ∗ 𝐼2 ∗ 𝐼3 ; Where

C=1.

The circuit is given in fig 2.

Fig 2: Up Counter Logic Circuit.

B. Down Counter

 It has the operation principle of subtracting 1 to its

input. The truth table should look like this:

Table II: Truth Table for Down Counter

Inspecting the truth table we get the bitwise input

output relationships:

𝑂1 = 𝐶 ∗ 𝐼1 + 𝐶 ∗ 𝐼1; Where C=0.

𝑂2 = 𝐶 + 𝐼1 ∗ 𝐼2 + 𝐶 + 𝐼1 ∗ 𝐼2; Where C=0.

𝑂3 = 𝐶 + 𝐼1 + 𝐼2 ∗ 𝐼3 + 𝐶 + 𝐼1 + 𝐼2 ∗ 𝐼3;

Where C=0.

The circuit is given in fig 3.

C. Multiplexer 1 and 2

The multiplexers (MUXes) work as the decider

between the present floor and the next floor. After

the binary value of current i’th and i+1’th and i-1’th

floors had been calculated, there are three types of

action that could be carried out:

Current

Floor

(Input)

I3 I2 I1 Next

Floor

(Output)

O3 O2 O1

GF 0 0 0 1
st
 0 0 1

1
st
 0 0 1 2

nd
 0 1 0

2
nd

 0 1 0 3
rd

 0 1 1

3
rd

 0 1 1 4
th

 1 0 0

4
th

 1 0 0 5
th

 1 0 1

5
th

 1 0 1 6
th

 1 1 0

6
th

 1 1 0 7
th

 1 1 1

Current

Floor

(Input)

I3 I2 I1 Next

Floor

(Output)

O3 O2 O1

7
th

 1 1 1 6
th

 1 1 0

6
th

 1 1 0 5
th

 1 0 1

5
th

 1 0 1 4
th

 1 0 0

4
th

 1 0 0 3
rd

 0 1 1

3
rd

 0 1 1 2
nd

 0 1 0

2
nd

 0 1 0 1
st
 0 0 1

1
st
 0 0 1 GF 0 0 0

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 52 Number 3 October 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 144

Fig 3: Down Counter Logic Circuit.

i) Deciding to stay at same floor as no call is there to

serve. In this case the i’th floor should be chosen

instead of i+1’th or i-1’th floor.

ii) Deciding to move upward as a higher floor has a

call to serve. In this case the i+1’th floor should be

chosen instead of i’th or i-1’th floor.

iii) Deciding to move downward as a lower floor has

a call to serve. In this case the i-1’th floor should be

chosen instead of i’th or i+1’th floor.

So, two multiplexers had been used to decide

between these options. The first multiplexer takes

the i+1 and i-1 floor values as inputs and depending

on directional selector decides to move up or down

from the present floor i. This MUX gives either

i+1-th floor or i-1-th floor value as output. The

second multiplexer works as a decider between the

old floor (i-th) and the new floor (i+1-th /i-1-th)

values and depending on call memory decides

whether to keep the floor unchanged or to move on

to next floor with new value obtained as a result

from the first multiplexer.

The logic used for a single bit is:

𝑂 = 𝐶 ∗ 𝐼1 + 𝐶 ∗ 𝐼2; Where

C= Directional Selector (1
st
 MUX)/ Call Memory

(2
nd

 MUX) bit

I1= i-1-th floor (1
st
 MUX)/ present floor (2

nd

MUX)‟s bit

I2= i+1-th floor (1
st
 MUX)/ next floor (2

nd
 MUX)‟s

bit

O=Output bit

The logic is quite easy to implement. Each of the

multiplexers could be made using basic logic gates:

six 2-input AND gates, three NOT gates and three 2-

input OR gates.

For the first multiplexer, three of the AND gates

have the bits of i+1-th floor at one of the inputs and

other three AND gates have the bits of i-1-th floor at

their inputs. The AND gates with i+1-th floor‟s bits

as input have the directional selector bit as the other

input, while the ones with i-1-th floor‟s bits have

the NOT of the directional selector bit as one of the

inputs. When the selector has value 1, i+1-th floor‟s

bits will emerge as is, but the i-1-th floors bits will

all become 0. If we bitwise OR these results using

OR gates, we finally have the i+1-th floors bits at

output. In reverse scenario, i-1-th floor‟s bits will be

the output of this multiplexer.

For the second multiplexer, three of the AND gates

have the bits of i-th floor at one of the inputs and

other three AND gates have the output bits of the

first MUX as their inputs. The AND gates with

outputs of first MUX have the call memory bit as the

other input, while the ones with i-th floor‟s bits

have the NOT of the call memory bit as one of the

inputs. When the call memory bit has value 1, first

MUX‟s bits will emerge as is, but the i-th floors bits

will all become 0. If we bitwise OR these results

using OR gates, we finally have the first MUX‟s bits

at output. In reverse scenario, i-th floor‟s bits will be

the output of this multiplexer.

D. Shift Registers as Delay/Storage Elements

The four bit directional universal shift register IC

74194 had been used to store the bits of the outputs

and inputs of the previously described sub circuits.

The 74194 IC has four inputs with four outputs and

have been used in our system to have a synchronous

parallel input parallel output operation with

capability of „HOLD‟. The operation was just like

some sluice gate. Till it has a clock input bit HIGH it

will do nothing and hold the already present value of

the output. But as soon as a HIGH occurs at the

clock input, the four bits at input will be transferred

to output bits and will hold them as output bits till

next clock HIGH bit occurs. Thus at each clock

HIGH bit, input values will be loaded at output and

the IC will be holding them indefinitely at output till

next clock HIGH occurs. Fig 4 shows the opeartion.

Fig 4a: CLK is LOW, so input 010 is not passed to output, output
holds the previous value.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 52 Number 3 October 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 145

Fig 4b: CLK is HIGH, so input 010 is passed to output.

The first 74194 IC (top one in fig 5) was used as the

supplier of input of Up counter and Down counter. It

took its input from the output of MUX#2 and

supplies this value as current i-th floor to the

counters with 10 second pulse at clock. Thus it

works in a feedback loop. The second 74194 IC

works as the supplier of floor number to comparator

sub circuit (bottom one in fig 5). Every second it

passes on the present floor value (output of MUX#2)

to the comparators to help them compare and find if

there is a new call at any floor.

Fig 5: Counter->MUX->Storage/Delay Elements. The first part of

elevator control circuit.

E. Floor Comparator

The four bit magnitude comparator IC 7485 has

eight inputs and three outputs. It can compare two

inputs namely A3A2A1A0 with B3B2B1B0 and tell

whether A=B or A>B or A<B.

This idea had been used to compare the present floor

value with a fixed value which denotes a floor and to

deduce if the fixed input floor is below or equal or

above to present floor. Thus all floors above i’th

floor (i++) and all floors below i’th floor (i--) could

be identified. The A3 and B3 bits had always been

grounded and only the A2A1A0 bits comprising

present floor‟s bits had been compared to B2B1B0

bits of the fixed floor‟s value. Eight such

comparators were used to denote eight floors from

000 to 111. The basic logic equation followed to

compare any two “parallel” bits (suppose A0 and

B0) and generate the three results:

 i) 𝐴0 > 𝐵0: 𝑄1 = 𝐴0 ∗ 𝐵0
 ii) 𝐴0 < 𝐵0: 𝑄2 = 𝐴0 ∗ 𝐵0
 iii) 𝐴0 = 𝐵0: 𝑄3 = 𝐴0 ∗ 𝐵0 + 𝐴0 ∗ 𝐵0

This single bit operation can be implemented with

basic logic gates as in fig 6.

Fig 6: Greater-Equal-Lesser Comparator for a single bit.

Similarly bitwise relation of A1, B1 and A2, B2

could be found. The final result is A=A2*A1*A0

and B=B2*B1 *B0. In this case A denotes the fixed

floor of the IC 7485 and B denotes current floor,

output of the bottom 74194 IC. The full eight floor

comparator circuit can be seen in fig 7.

F. Call Memory/Directional Selector

The call memory sub circuit uses eight 4 bit

synchronous counter IC 74190 as its main

component. This IC has the characteristic to count

up/down from a predefined value controlled by the

clock input synchronously. With each HIGH at clock

input the counter will change the output bits and can

count from 0000 to 1111 and vice versa. This idea

had been used to create the call memory and

directional selector. The least significant bit of the

output will change between 0 and 1 with each HIGH

pulse at input. Whenever there is a call for a floor

the counter associated with that floor will have a

HIGH pulse at clock and will make the LSB equal to

1. But as soon as the call is served a new HIGH

pulse to the clock will be sent and LSB will become

0. Same thing happens for directional selector.

Whenever we need to change direction we just

change the LSB of the counter to get a direction

change i.e. 0 means downward and 1 means upward

movement. The operation of this IC in our circuit

can be seen in fig 8.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 52 Number 3 October 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 146

.

Fig 7: Connection diagram with eight 7485 IC for greater than, equal or less than comparison for finding relative position of all floors

compared to current floor. Some external LEDs and gates were used to check perfect working.

G. Interconnectors

1) Call and Distance Checker: Three outputs

of a comparator IC 7485 (gives a floor‟s

position with respect to current floor in the

building structure) is fed to three 2-input

AND gates and the other three inputs of

these AND gates is the LSB of the

associated counter IC 74190 (tells if there is

a call at this floor). So three AND gates are

doing this: they are telling if this floor has a

call and also telling the relative distance

between this floor and current floor. If the

AND gate with A<B input gives 1 means

present floor is above this floor with call,

A>B input AND gate‟s 1 output will denote

present floor is below this floor with call

and finally, A=B input AND gate‟s 1 output

means the current floor and this 7485‟s

floor is the same one and also with call. If

all AND gates give zero that means no call

is associated with this floor.

2) Call Generator and Flusher: Eight basic

switches have been used to generate calls at

a floor; if they are pressed there is call at

that specific floor. Actually they connect

the call memory bit generator‟s input to a

power supply if pressed. To cancel calls by

flushing memory the A=B output of 7485

IC of each floor is connected to a two input

XOR gate. The other input is that floor‟s

call switch. The output of this XOR gate

goes to clock input of the counter IC 74190

of that floor. When the switch is pressed

one of the inputs of XOR is 1 while as the

A=B is 0 (as current floor is different than

call floor) so XOR output will be 1

meaning 74190 CLK is now HIGH. Then

74190 LSB will become 1, indicating call

has occurred. Now if we remove the call

switch‟s 1 the 74190 LSB will still hold

onto 1 even though the clock input has gone

low because XOR output will now go to

zero. As soon as A=B happens, the second

XOR input will be 1 while as the switch is

not pressed the first input holds 0 value. So,

XOR output will be 1 which will set 74190

clock input HIGH so the call will be

cancelled. Delay components can be used

in between XOR output and clock input so

that the elevator gets sometime between

reaching the floor with call and cancelling

the call by flushing memory; which we

could say the serving time. The operation

can be seen in the following table III.

3) MUX Selector Generator: All eight

comparator‟s outputs had been grouped into

three final outputs of A>B, A<B and A=B

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 52 Number 3 October 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 147

using three eight input OR gates. A>B

OR‟s output 1 means call in any above

floor and A<B‟s OR output 1 means call in

any below floor. These outputs had been

given to a two input AND gate. The output

of this AND is the selector of the second

MUX#2. If the AND output is 1 then there

is call in either above or below floor so the

new floor value that came from up/down

counter must be chosen instead of staying

at same floor. This same bit can be used to

change direction when no call is found at

above or below floors. This AND output 0

means no call in above or below floor,

which is a signal to stay on same floor and

keep on sweeping for new calls by

changing direction. The A>B OR‟s output

can be used as selector of first MUX#1; if it

is 1 that means we have call at higher floor

so we take the Up counter‟s result. Same

could be done using A<B OR‟s output for

Down counter. When both OR has 1, we

need to go in the same direction as the

elevator was moving previously, so a

memory element needs to be introduced

which will denote the already going on

movement direction. This had been

implemented again by a 74194 IC. Till the

clock input is HIGH, the IC will not pass

the input to output, which has already been

shown in fig 4. The complete view is in fig

9.

Table III: Truth Table for Call Generator and Flusher.

7485 IC‟s

A=B Output

Call

Switch

XOR

Gate

Output

74190

 IC‟s

CLK

74190

IC‟s

 LSB

1=Reached

Floor

0=Not Yet

 Reached

1=Call

0=No

Call

 1=

Call

Needs

 To Be

Served

0=Call

 Has

Been

Served

0 1 1 1 1

0 0 0 0 1

1 0 1 1 0

1 1 0 0 0

The total view of the interconnectors is as in fig 10.

Fig 8a: CLK is HIGH, LSB is made HIGH

Fig 8b: CLK is LOW, LSB is still HIGH

Fig 8c: CLK is HIGH, LSB is made LOW

Fig 8d: CLK is LOW, LSB is still LOW

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 52 Number 3 October 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 148

Fig 9: A visual representation of eight 7490 IC checking for calls at all floors. These results had been unified using OR and AND gates to
create the selectors of MUX#1 and MUX#2.

Fig 10: Connection diagram with floor comparator, call memory/directional selector and interconnector sub circuits. The 2nd part of the

elevator system.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 52 Number 3 October 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 149

.

Fig 11: Connection diagram of complete elevator circuit.

V. COMPLETE CIRCUIT

The complete elevator control circuit can be seen in

fig 11. The outputs of up and down counter have

been sent to MUX#1, which selects between their

outputs depending on directional selector bit. The

MUX#1 output and input of up and down counter is

sent to MUX#2 which selects between them using

the call memory bit. The output of MUX#2 is again

sent back to the inputs of up and down counter after

a certain time delay via a delay element (shift

register). Again another shift register is used to send

the MUX#2 output to the eight 7485 IC for

comparing with their built in values and decide

whether the built in values are above, below or same

to the output of MUX#2. At the same time, the call

switches are used to create call using 74190 IC‟s

LSB. This value together with 7485 outputs decides

whether the elevator should move up, down or stay

at the same floor. The interconnectors produce the

directional selector bit and call memory bit using

basic logic gates from the outputs of 7485 and 74190

ICs, which are then used as selectors in MUX#1 and

MUX#2 with proper delay and storage elements in

between. Thus the whole system connects together

to control the elevator system.

VI. CONCLUSION

A digital logic based elevator control system for an

eight storied building had been proposed in this

paper. Considering the events that occur during the

movement of an elevator, a working flowchart had

been created. This flowchart was used to come up

with the functions that needed to be performed to

control the elevator. Then these functions had been

translated into logic equations and were

implemented using basic logic gates and available

digital logic ICs into sub circuits. Combining these

sub circuits the full control circuit had been created

[5].

Acknowledgment

The simulation of this work was done by using

software 'Proteus' (ISIS Professional version 7.8

SP2).

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 52 Number 3 October 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 150

REFERENCES

[1] S. B. R. Carter, and A. Selvaraj, “Design and
implementation of PLC based elevator,” International

journal of computer applications, vol. 68, no. 7, pp. 88-92,

2013.
[2] K. M. K. S. Bandara, S. G. Aberathne, and S. D.

Dewasurendra, “Statechart based elevator controller and its

verification,” First international conference on industrial
and information systems, pp. 88-92, August 2006.

[3] S. Huseinbegovic, S. Kreso, and O. Tanovic, “Design and

implementation of the CAN based elevator control
system,” XXII international symposium on information,

communication and automation technologies, pp. 1-6,

October 2009.
[4] Monzurul Islam Dewan, Md. Arafat Mahmud, Md. Tashfiq

Bin Kashem, and Mushfiqa Baishakhi Upoma, “A

Simulation Study of Elevator Control of a Building using
Digital Logic Circuit.”, IOSR Journal of Engineering, vol.

3, issue 12, pp 38-45, December 2013.

[5] Youtube Channel of Md. Zunaid Sikder (2014) [Online].
available:

https://www.youtube.com/watch?v=eDzSo_VpeCQ

http://www.ijettjournal.org/

