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Abstract 

 
Bayesian Network (BN) has been used in a broad range 

of applications. A challenge in constructing a BN is defining 

the node probability tables (NPTs), which can be learned 

from data or elicited from domain experts.  In practice, it 

is common to not have enough data for learning and 

elicitation from experts is the only option. However, the 

complexity of defining NPTs grows exponentially, making 

their elicitation process costly and error-prone. Previous 

work proposed a solution: the ranked nodes method (RNM). 

However, the details necessary to implement it were not 

presented. Nowadays, the solution is only available through a 

commercial tool. Hence, this paper presents an algorithm to 

define NPT using the RNM. We include details regarding 

sampling and how to mix truncated Normal distributions 

and convert the resulting distribution into an NPT. We 

compared the results calculated using our algorithm with 

the commercial tool through an experiment. The results 

show that our solution is equivalent to the commercial 

tools’ in terms of NPT definition with a mean difference 

of 1.6%. Furthermore, our solution is faster. The solution 

developed is made available as open source software. 

 
Bayesian Network; Expert systems; Node Probability 

Table; Ranked nodes 
 

1 Introduction 

 
Bayesian Network (BN) is a mathematical model that 

graphically and numerically represents the probabilistic 

relationships between random variables through Bayes 

theorem. Recently, given the evolution of the computational 

capacity, which enabled the calculation of complex BNs, it 

has become a popular technique to assist on decision- 

making [7]. It has been applied in several areas such as 

large-scale engineering projects [11], software engineering 

[14, 13], and sports management [3]. 

However, constructing a BN is challenging and this 

problem can be subdivided into: (i) building the directed 

acyclic graph (DAG) and (ii) defining the NPTs. In this 

research, we focus on (ii). In cases in which there is a 

database with enough information for the given domain, it 

is possible to automate the process of defining the NPT 

through batch learning [9]. Unfortunately, in practice, in 

most cases, there is not enough data [7]. Furthermore, 

experts can often understand and identify key relationships 

that data alone may fail to discover [2]. Therefore, the 

concept of smart-data is defined by Constantinou and Fenton 

[2]: a method  that  supports  data  engineering and 

knowledge engineering approaches with emphasis on 

applying causal knowledge and real-world facts to develop 

models. In this context, it is necessary to manually elicit 

data from  domain  experts  to  define  the  NPTs. Given that 

the complexity of building NPTs grows exponentially, 

depending on the number of parents and states, the manual 

definition of the NPT becomes unfeasible. 

Fenton et al. [7] present an approach to reduce the 

complexity of manually defining a NPT through elicitation of 

the knowledge of domain experts.   The approach is 
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limited to nodes (i.e., random variables) with an ordinal 

scale (e.g., Good, Medium, Bad), which are called ranked 

nodes. In ranked nodes,  the  ordinal  scale  is  mapped into 

a scale monotonically ordered in the interval [0, 1]. The 

solution is based on a Normal distribution truncated 

between [0, 1] (i.e., TNormal) to represent the NPTs. Given 

dependencies between these variables. Θ represents the set of 
the probability functions. This set contains the parameter θxi|πi 

= PB (xi|πi) for each xi in Xi conditioned by πi, the set of 
the parameters of Xi in G. Equation 1 presents the joint 
distribution defined by B over V . 

this, the NPT of a child node is calculated as the mixture of n n 

the TNormal of its parent nodes. There are four functions to PB (X1, . . . , Xn) = 
n 

PB (xi|πi) = 
n 

θX i|πi (1) 
model the mixture: weighted mean (WMEAN), weighted 

minimum  (WMIN),  weighted  maximum  (WMAX)  and 
i=1 i=1 

the mixture of classic minimum and maximum functions 

(MIXMINMAX). We present more details regarding this 

approach in Section 3. Currently, this solution is only 

made available through AgenaRisk1, a commercial tool to 

construct Bayesian networks. 

On the other hand, Fenton et  al.  [7]  do  not present 

the details to, in practice, implement the solution. Despite 

presenting the mixture functions, there is no information 

regarding the algorithms used to generate and mix 

TNormal, define samples size and define a conventional NPT 

given the calculated TNormals. The last factor enables the 

integration of ranked nodes with other types of nodes such 

as boolean and continuous, which brings more modeling 

flexibility. 

In this paper, we present an algorithm to define a NPT 

for ranked nodes using the functions WMEAN, WMIN and 

WMAX. For this purpose, we implemented the code in C++ 

and executed experiments to compare our solution in terms 

of accuracy and performance with AgenaRisk. The results 

show that our solution is equivalent to the commercial tools’ 

in terms of NPT definition within a margin of error of 10%. 

Furthermore, our solution presented better performance 

than the existing available commercial tool. The solution is 

made available in a popular open source website2. 

This paper is organized as follows. Section 2 presents 

an overview on Bayesian networks. Section 3 presents 

details regarding ranked nodes. Section 4 presents the 

details of the algorithm developed to implement ranked 

nodes. Section 5 presents the results of the comparison 

between our solution and AgenaRisk. Section 6 presents 

our conclusions, limitations and future works. 

 

2 Bayesian networks 
 

BNs are probabilistic graph models used to represent 

knowledge about an uncertain domain [1]. A BN, B, is a 

directed acyclic graph that represents a joint probability 

distribution over a set of random variables V  [8].   The 

network is defined by the pair B = {G, Θ}. G is the 
directed acyclic graph in which the nodes X1, . . . , Xn 

represent random variables and the arcs represent the direct 
 

 

1www.agenarisk.com 
2https://github.com/lockenunes/kaizenbase 

We present an example of a BN in Figure 1, in which 

ellipses represent the nodes and arrows represent the arcs. 

The probability functions are usually represented by tables. 

Even though the arcs represent the causal connection’s 

direction between the variables, information can propagate in 

any direction [12]. 

 
 

  
 

 

 
 

X 3 

 X1 X2 T F 

F F 0.1 0.9 

F T 0.4 0.6 

T F 0.2 0.8 

T T 0.6 0.4 

 

 
Figure 1. A Bayesian network example. 
 

 
3 Related works 

 
The problem of defining NPT for large-scale Bayesian 

networks has already been discussed in the literature. There 

are several methods to reduce the complexity and to encode 

expertise in large node probability tables. For instance, 

Noisy-OR [10] and Noise-MAX [5] are well-established 

methods, but Noisy-OR only applies to Boolean nodes, and 

Noisy-MAX does not model the range of relationships we 

need. Furthermore, Das [4] presented the Weighted Sum 

Algorithm (WSA), a solution to semi-automatically define 

NPTs through knowledge elicited from domain experts. 

In Fenton et al. [7], an approach similar to WSA was 

proposed: the Ranked Nodes Method (RNM). A ranked 

node is a random variable represented in an ordinal scale 

monotonically ordered in the interval [0, 1]. For instance, for 

the ordinal scale [“Bad”, “Moderate”, “Good”], Bad is 

represented by the interval [0, 1/3];  Moderate,  by [1/3, 

2/3]; and Good, by [2/3, 1]. This concept is based on the 

doubly truncated Normal distribution (TNormal) limited in the 

[0, 1] region.   This distribution is based on four 

X2 
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WMEAN WMIN 

WMAX MIXMINMAX 
 

 
 

Figure 2. TNormal examples. 

 

parameters: µ, mean (i.e., central tendency); σ2, variance 

(i.e., confidence in the results); a, lower bound (i.e., 0); 

and, b, upper bound (i.e., 1). This distribution enables us 

to model a variety of shapes (i.e., relationships) such as a 

uniform distribution, achieved when σ2 = ∞, and highly 
skewed distributions, achieved when σ2 = 0. In Figure 3, 

we show an example of TNormal with same µ, but different 

σ2. 

between the two functions is that WMEAN calculates the 

weighted mean of the parent node’s values (i.e., the weights 

are set for the parent nodes) and MIXMINMAX mixes the 

minimum and maximum functions (i.e., the weights are set 

for the functions, instead of the parents). 

We chose to implement the RNM approach due to its 

popularity given the number of referrals and its conceptual 

potential to be more flexible. In Fenton et al. [7], as already 

mentioned, four functions were presented to combine the 

data of the parent nodes into the child. On the other 

hand, more functions could be defined, if necessary.  We 

µ = 0.5 
σ 2 = 1 

µ = 0.5 
σ 2 = 0.01 

complement the work of Fenton et al. [7] by presenting all 

the steps required to implement ranked nodes and making 

the source code available to the community. 

 
4                  Details of the algorithm 

 
 

 
Figure 3. Examples of TNormal. 

 
µ is defined by a weighted function of the parent nodes. 

Fenton et al. [7] present four functions: weighted mean 

(WMEAN), weighted minimum (WMIN), weighted 

maximum (WMAX) and a mixture of classic minimum 

and maximum functions (MIXMINMAX). According to 

the authors, these functions are enough to represent the 

types of relationship necessary to define NPTs. We show 

examples of NPTs calculated with these functions in Figure 

2.  In the examples presented in Figure 2, WMEAN and 

MIXMINMAX  have  the  same  values. The difference 

The algorithm is probabilistic and composed of two 

main steps: (i) generate samples  for  the  parent  nodes and 

(ii) construct the NPT. In step (ii), for each possible 

combination of values for the parent nodes (i.e., each column 

of the NPT), the samples defined in the previous step are 

mixed given a function selected by the user and a TNormal 

is generated using the resulting mix and a variance defined by 

the user. An overview of the algorithm is shown in Figure 4. 

As already mentioned, a ranked node is conceptually 

represented by an ordinal scale, which is mapped to the 

continuous interval [0, 1].    We represent it as a set of 

uniform distributions. For an ordinal scale with three 

values (e.g., Bad, Moderate and Good): U (0, 1) = pbad ∗ 

http://www.ijettjournal.org/
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Figure 4. Overview of the algorithm. 
 

U (0, 1/3) ∪ pmoderate ∗ U (1/3, 2/3) ∪ pgood ∗ U (2/3, 1), 
where p is the density of the distribution. For the example 
shown  in  Figure  5,  the  set  of  uniform  distributions  is 

composed  of  the  union  of  three  uniform  distributions: 

U (0, 1) = 54.7 ∗ U (0, 1/3) ∪ 36.5 ∗ U (1/3, 2/3) ∪ 8.80 ∗ 
U (2/3, 1).    Numerically,  this union is calculated using 

samples. Considering a sample size of 10,000, to represent 

the NPT shown  in  Figure  5,  it  is  necessary  to  collect 5, 

700 random samples from U (0, 1/3), 3, 650 random 

samples from U (1/3, 2/3) and 880 random samples from 

U (2/3, 1). 

Figure 4 shows that the algorithm is composed of four 

collections: repository[], a vector to store the samples of 

base states for the parent nodes; parents[k], a vector to 

store references to the parent nodes of each child node, in 

which k is the number of parents; states[m], a vector to 

store the states of each node, in which m is the number of 

possible values for the child node given the combination 

of its parents states; and distribution[m], a vector to store 

the resulting distribution for each possible combination of 

states of the parent nodes. 

We used the repository strategy for optimization 

purposes. First, we register in memory (i.e., in repository[]) 

distributions that represent the base states, which are states 

with an evidence (i.e., a node has 100% of chance for a 

 

samples of a uniform distribution limited in the interval [2/3, 

1]. Empirically, we defined that using a sample size of 10,000 

is enough to guarantee a margin of error less than 0.1%. We 

registered each sample with meta-data regarding its 

configuration (i.e., number of states and µ). 

We used the data in repository[] to generate samples for a 

node. Therefore, the samples for a base state are only 

generated once and reused later. This step is represented in 

Figure 4 by the block Generation of samples. 

The next step consists of, for each combination of the 

parent nodes, mix the TNormal using equidistant samples, 

randomly selected, for each parent node.  Empirically, we 

defined that 10,000 equidistant samples is enough to 

guarantee a margin of error less than 0.1. The samples are 

mixed using a given function (e.g., WMEAN, WMIN, WMAX 

or MIXMINMAX) and the defined variance. 

To mix the distributions, we, randomly, remove an element 

from each sample of the parents and use them to calculate a 

resulting element using a given function. For instance, 

consider node A with two parents B and C. If we are calculating 

the probabilities of A for the combination Low-High and the 

selected function is WMEAN with equal weights, if the values 

removed in an iteration were 0.1 and 0.7, the resulting value 

would be 0.4. This step must be repeated until the 

collections of samples are empty. 
2 

given state). For instance, for a node composed of the 

states [Bad, Moderate, Good], we registered the samples 

for: 100% Bad, 100% Moderate and 100% Good, which 

respectively has µ = 1/6, µ =  1/2 and µ  =  5/6. For 

this purpose, we collected samples from a uniform 

distribution with the limits defined given the thresholds 

of the scale. For instance, for 100% Good, we collected 

Afterwards, the set of calculated elements and the given σ 
are used as input to generate a TNormal. With this purpose, we 

used the library TRUNCATED NORMAL3. 

The resulting distribution is converted to an ordinal scale and 

represents a column in the NPT of the child node (i.e., 
 

 

3http://people.sc.fsu.edu/ jburkardt/cpp src/ 

truncated normal/truncated normal.html 
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AgenaRisk C++  
µ σ2 µ σ2 Percentage difference (%) 

0.1 0.007 0.3 0.0842 0.9 

0.3 0.15 0.3 0.39 0.3 

0.5 0.15 0.5 0.39 0.4 

0.8 0.15 0.8 0.39 0.9 

0.9 0.007 0.5 0.0842 0.5 
 

                                                                                             Table 1. Results for generating one node with WMEAN. 

 

 
 
 

 

 

 

Low 

 

 
 

AgenaRisk’s. 

On the other hand, to compare the solutions, we defined some 

tests cases and empirically calibrated σ2 to have equivalent 

values for both algorithms (i.e., not necessarily the same). Given 

that the calibration was manual, there is no guarantee that we 

found the best values σ2. For instance, for the configuration D = 

A + B + C , we found that the results are equivalent if σ2 = 

0.0005 in AgenaRisk and 

 

 

 

0 1/3 2/3 1 
 
Figure 5. Conversion from ordinal to 

continuous scale. 

 
 

in the given example, the column for the combination Low- 

High). At the end of this step, all the possible combinations 

of states of the parent node are evaluated and the NPT for 

the child node is completed. 

 
5 Validation 

 
We implemented the algorithm presented in Section 4 

in C++. We chose this language, due to its efficiency, to 

use the library TRUNCATED NORMAL and to facilitate 

the integration with SMILE4, which is a library of C++ for 

reasoning in graphical probabilistic models. To validate our 

solution, we defined test cases and compared our results 

with AgenaRisk’s. 

Conceptually, our solution is correct if it is as flexible 

as  AgenaRisk  to  generate  curves.    Since  calibration is 

a natural step in creating BNs, having the  same inputs 

(i.e., ) generating different result is not an issue. 

Assuming that the equations presented in Fenton et al. 

[7] are correct and that library TRUNCATED NORMAL 

generates proper truncated Normal distributions, there is no 

reason to conclude that our approach is not equivalent to 
 

 

4https://dslpitt.org/genie/wiki/SMILE Documentation 

State Probability 

Low 54,7 

Moderate 36,5 

High 8,80 

 

 
 

54,7% 

Moderate 

 

36,5% 

High 

8,80% 
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σ2 = 0.075 in TRUNCATED NORMAL. 

Given that it is recommended to improve the graph of the 

BN if a given node has more than three parents [6], we only 

evaluated our approach with two structures: a single node 

(i.e., most simple) and a node with three parents (i.e., most 

complex). For the single node case, we randomly defined a 

µ and σ2 for AgenaRisk and ran 10 tests with WMEAN. 

For WMEAN, the mean difference between AgenaRisk and 

our solution for independent nodes was 0.6%, as shown in 

Table 1. 

For the case with three parent nodes, we evaluated four 

structures for each function. The mean difference of the 

results was 1.6%, with the worst case being 6.2%. In Figure 

6, we show the box plot for the results for each function. 

 

 

 
Figure 6. Box plot for the results for each 

function. 
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Regarding performance, our solution was faster. For a 

BN composed of a child node with three parents, in average, 

AgenaRisk executed in 1.92 seconds; in our solution, it 

executed in 0.34 seconds. Given that the standard deviations 

were less than 0.1, it is clear that our solution is faster. 

Therefore, we did not perform hypothesis testing. On the 

other hand, it is necessary to consider that our solution 

is dedicated only to defining NPT and AgenaRisk is a 

more robust tool with a graphical user interface and several 

features. 

 

6 Conclusions 
 

Despite recent popularity, the construction of BNs is 

still challenging.  One of the challenges refers to defining 

the NPTs for large-scale BN. It is possible to automate 

this process using batch learning, but it requires a database 

with enough information. In practice, this is not common. 

The  other  option  is  to  elicit  data  from  experts,  which 

is  unfeasible  if  it  is  required  to  manually  define  the 

probabilities of all combinations of the states of the parent 

nodes.   Fenton et al.   [7] presented a solution based on 

ranked nodes, but it lacks the necessary steps to apply it 

in practice without AgenaRisk, which is a commercial tool. 

In this paper,  we  complement  the  work  of  Fenton et 

al. [7] by presenting an algorithm to  implement ranked 

nodes with details regarding sample size for the 

probability distributions and how to define a conventional 

NPT given the calculated TNormals. We compared our 

results with AgenaRisk and achieved acceptable results. In 

our experiments, our solution reached a mean difference of 

1.6%. Given our analysis, we concluded that differences 

between our solution and AgenaRisk are because of the 

different implementations of TNormal used as base by the 

algorithms. This solution is currently limited to WMEAN, 

WMAX and WMIN. 

For future works, we will implement the MIXMINMAX 

function. Furthermore, we will implement an algorithm to 

automate the calibration of the NPTs based on data elicited 

by the domain expert. 
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