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Abstract—Controlling complex chaotic systems and analyz-
ing their behavior have emerged as an attractive field of
exploration in different domains of engineering. Over the
years, large number of mathematical tools are developed to
identify and control the typical behaviour of these systems.
The work presented in this manuscript explores chaos in
nonlinear dynamics of an indirect field controlled induction
motor drive system. For this exploration, impact of variation
in rotor inductance is considered while assuming the load
torque to be fixed. Chaotic attractors are first verified by
investigating Lyapunov Exponents. The range of parametric
variation is explored to check for the events where chaos can
creep into the system again. Finally, an attempt is made to
measure the transition point between stability and instability
of the chaotic system. This is verified using the Lyapunov
Exponent measure and the phase plots. The detailed simulation
results highlight the efficacy of the methodology to identify the
chaotic behaviour of the induction motor.
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I. INTRODUCTION

The general perception on chaos is equivalent to disorder
or complete randomness. It should be noted that chaos is not
exactly disordered, and its random-like behaviour is math-
ematically governed by a deterministic model or equations
that contain no element of chance [1]. The advances in
understanding and analyzing nonlinear systems have shown
that the phenomenon of typical chaotic behavior may be
attributed to certain systematic rules rather than linking it
to arbitrariness. The intriguing aspect of chaotic systems is
that even though their description can be made by following
deterministic models, their sensitiveness to small perturbation
in initial conditions renders them almost impossible to ac-
curately predict their future behavior [2]. Along with that,
plot of the trajectories of these systems in phase plane exhibit
their important trait of non-settling to a particular equilibrium
point or to a periodic orbit, but still remaining structurally
stable while exhibiting strange attractors. Chaotic systems find

reference in variety of fields like chemical systems, physi-
cal systems, electronic systems, electro-mechanical systems,
biological systems, economical systems etc. Main thrust in
all these areas is to identify chaotic behaviour, control and
suppression of such behaviour and to utilize the benefits of
this aspect in certain application fields like secure communica-
tion, encryption/decryption of information, pattern formation,
chemical mixing etc. Various nonlinear control techniques are
utilized to achieve all these objectives [3]-[12].

The investigation of chaotic behaviour in electric drives is an
area of open interest due to direct applications of these drives
in many areas, such as, industrial processes, electrical loco-
motives etc.[13]-[18]. For instance, feedback based linear and
nonlinear controllers were proposed to control and synchronize
the systems with chaotic dynamics by Rafikov et al. [19]. A
global feedback control methodology utilizing measurement of
the maximum amplitude of associated pattern in the domain of
interest, which leads to stability of the system, was proposed
by Golovin et al. [20]. The presence of chaos in an induction
motor was investigated and a sliding mode technique (SMT)
based controller was proposed by D. Chen et al. [21]. In
this work, indirect field control based nonlinear dynamical
model of induction motor drive was presented and the typical
nonlinear behavior of the system model was analysed using
bifurcation diagrams, phase portraits etc. Moreover, a sliding
mode control method was also presented.

In the present work, chaotic behaviour of indirect field
controlled induction motor is analysed to explore possibility
of chaos with parametric variations. The proposed approach
uses the induction motor model presented in [21]. The core
approach is based on computation of the Lyapunov exponents
(LE) as a measure of quantifying chaos and thus identifying
the region of chaotic behaviour. These Lyapunov exponents
are one of the fundamental attributes associated with chaos
in the literature [22]-[28]. These measures are evaluated by
following different methodologies developed extensively over
the period of time. Some of these approaches can be found in
Geist et al. [22] where an early survey is presented. Wolf et al.
[23] proposed an approach for calculating these measures from
experimental data obtained from measurement. The Lyapunov
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exponents are predominantly used to characterize different
behaviours exhibited by nonlinear systems. The number of
Lyapunov exponents for a given dynamical system is equal
to the number of associated state variables. These Lyapunov
exponents may turn out to be positive, negative, or zero.
Using Lyapunov exponent plots, we investigate the chaotic
nature of the system and then by parameter variation, effort
is made to either eliminate the system chaos or chaotify the
system. For this purpose, impact of varying rotor inductance
is considered while considering the load torque to be fixed.
Further, bifurcation analysis is presented to identify the range
of parameters for which the induction motor exhibit chaotic
behaviour. Detailed simulations are presented in the end to
highlight the efficacy of proposed methodology.

The paper is organised as follows. In Section 2, the
nonlinear model of induction motor drive with current
control, in a reference frame assumed to be rotating at
synchronous speed, is discussed. Section 3 presents the
method used to compute the Lyapunov exponents. Section
4 discusses the presence of chaos and its elimination from
the system using Lyapunov plots. Section 5 discusses the
chaotification of the system by parameter variation and this
is verified using Phase plots, Hopf bifurcations and Lyapunov
exponent plots. Finally, concluding remarks regarding the
proposed work are presented in Section 6.

II. DYNAMIC MODEL OF THE INDUCTION MOTOR

The model of a current-driven induction machine (developed
by W. Leonhard in 1996) used for the analysis in [21] is
reproduced here. This model is expressed in a reference frame
which is assumed to be revolving at synchronous speed. The
associated mathematical dynamic model is given as follows:

ψ̇qr = −Rr
Lr
ψqr − ωslψdr +

Lm
Lr

Rriqs

ψ̇dr = −Rr
Lr
ψdr − ωslψqr +

Lm
Lr

Rrids (1)

ω̇r = −Rω
J
ωr +

1

J

[
3

2

Lm
Lr

np(iqsψdr − idsψqr)− TL
]

where Rr is rotor resistance, Lr is rotor self-inductance,
Lm is mutual inductance in a rotating reference frame, np is
the number of pole pairs, ωsl is slip frequency, ωr is angular
speed of the rotor, J is inertia coefficient, TL is load, ψqr
is rotor flux component associated with quadrature axis, ψdr
is direct axis component of the rotor flux. The parameters of
motor model presented in (1) are substituted with constants
defined as below:

c1 =
Rr

Lr
, c2 =

Lm

Lr
Rr, c3 =

Rω

J
, c4 =

1

J
, c5 =

3

2

Lm

Lr
np (2)

The state variables and control inputs are defined as:

x1 = ψqr,x2 = ψdr,u1 = ωsl,u2 = ids,u3 = iqs (3)

Therefore, the dynamics of induction motor drive with indirect
field control, in state space form, can be rewritten as follows:

ẋ1 = −c1x1 − u1x2 + c2u3

ẋ2 = −c1x2 + u1x1 + c2u2 (4)

ω̇r = −c3ωr + c4[c5(x2u3 − x1u2)− TL]

In industrial applications associated with regulating the
speed of motor, the indirect field oriented control is usually
used. This scheme employs a proportional plus integral (PI)
speed loop. This control scheme is described as follows:

u1 = ĉ1
u3
u2

u2 = u02 (5)

u3 = Kp(ωref − ωr) +Ki

∫ t

0

ωref (ζ)− ωr(ζ))dζ

where ĉ1 is the estimate for the inverse rotor time constant
c1, ωref is the constant reference velocity, u02 is the constant
reference for the rotor flux magnitude, Kp is the proportional
gain and Ki is the gain associated with integral part of PI
speed regulating element.

If ĉ1 = c1 i.e. ĉ1 is a correct estimation of time constant of
rotor, then control is said to be tuned. Otherwise, control is
termed to be detuned. In such case, degree of tuning is taken
as k = ĉ1/c1. Obviously, the controller is tuned and one sets
k = 1. Let us assume x3 = ωref−ωr and x4 = u3. The above
selections lead to a new fourth dimensional model, which is
derived from the model of close loop system represented by
equation (4) and the corresponding control strategy (5). The
new model can be written as follows:

ẋ1 = −c1x1 + c2x4 −
kc1
u02

x2x4

ẋ2 = −c1x2 + c2u
0
2 +

kc1
u02

x1x4 (6)

ẋ3 = −c3x3 − c4
[
c5(x2x4 − x1u02)− TL −

c3
c4
ωref

]

ẋ4 = (ki − kpc3)− kpc4
[
c5(x2x4 − x1u02)− TL −

c3
c4
ωref

]
This model is used for chaotic behaviour analysis in subse-
quent sections.

ISSN: 2231-5381 http://www.ijettjournal.org Page 42



International Journal of Engineering Trends and Technology (IJETT) - Volume 54 Number 1 December 2017

III. COMPUTATION OF THE LYAPUNOV EXPONENTS
(LES)

In case of chaotic systems, Lyapunov exponents are con-
sidered as average exponentially convering or diverging rates
of nearby trajectories of a given system in phase space. The
qualitative behavior of the systems dynamics can be linked
to the signs of the Lyapunov exponents. One dimensional
systems have a single characteristic Lyapunov exponent which
is positive for chaotic regime, zero for a marginally stable
orbit, and negative for a periodic attractor. Lyapunov exponents
as measure of chaotic nature have been utilized to analyze
nonlinear phenomena which are localized in time and/or space.
For example, these measures have been used in analyzing
fluid mixing along the mixing chamber’s border as highlighted
in [29]. The methodology used for the computation of the
LEs was motivated by the approach proposed by Bennetin
et al [30] and the work highlighted by Shimada et al. [31]
for obtaining a complete spectrum from a given differential
description. Overall, Lyapunov exponent gives us the average
rate of separation of two adjacent orbits of the dynamical
system which are very close to each other at time t = 0.
Quantitatively, the rate of divergence of two nearby trajectories
in phase space with small separation in initial conditions is
given as

|δx(t)| = eλt|δxo| (7)

where λ is the Lyapunov exponent.
The above rate of divergence can be different for different

orientations of initial separation vector. Thus, the spectra of
Lyapunov exponents exists with number of LEs equal to
the dimension of the associated phase space. The largest
Lyapunov exponent is commonly referred as the Maximal
Lyapunov exponent (MLE), because it determines a notion of
predictability for a given system. A positive MLE is a indicator
of underlying chaotic behaviour of the system.

In case of nonlinear system with evolution dynamics f(x)
in an n-dimensional phase space, the Lyapunov exponents
measures λ1, λ2,....., λn generally are dependent on initial
condition xo. These Lyapunov exponents characterize the be-
haviour of state trajectories in the tangent space of phase space.
These are described in terms of Jacobian matrix computed as
follows:

Q(xo) =

[
df(x)

dxo

]
x=xo

(8)

The Q matrix describes how a small perturbation in the initial
point xo propagates in the long run to final point f(xo).The
limit

lim
t→∞

(Q.QT )1/2t (9)

defines a matrix L(xo). If Λi(xo) denotes the eigenvalues of
L(xo), then the LEs are expressed as follows [32]:

λi(xo) = logΛi(xo) (10)

IV. ANALYSIS OF CHAOS IN THE SYSTEM

In the work presented in [21] the authors have empha-
sized the presence of chaos using phase portraits, bifurcation
diagrams and Poincare maps. Lyapunov exponents, which
may efficiently indicate whether a system is chaotic or not,
were not used. We first present the Lyapunov exponents
plot depicting the systems chaotic nature. To simulate the
system of equations obtained in (6) the parameters are chosen
as, c1 = 13.67, c2 = 1.56, c3 = 0.59, c4 = 1176, c5 =
2.86, u20 = 4, kp = 0.001, ki = 1, k = 1.5, ωref = 181.1
with the load torque TL = 0.5 and the initial states set to
x1 = 0, x2 = 0.4, x3 = −200, x4 = 6. The simulations
and results are shown in Fig. (1). From Fig. (1), it is clearly

Fig. 1: Dynamics of Lyapunov exponents at TL = 0.5.

concluded that one of the Lyapunov exponent measure is
positive in the given range, irrespective of the time, which
implies that the trajectories are diverging continuously with
time. It indicates that the system is behaving in a chaotic
manner for very small loads. When the load is increased to a
higher value (> TL = 8.5), then as indicated by the Lyapunov
exponent plot in Fig. (2) all the values are negative depicting
nonchaotic behaviour.

From Fig. (2) we observe that by increasing the motor
load significantly all the Lyapunov exponents turn out to be
negative thereby concluding that system chaos can be affected
by increment in the load.

V. CHAOTIFICATION OF THE SYSTEM USING
PARAMETER VARIATION

In this section, the chaotic behaviour onset is explored for
the induction motor by using parameter variation. To induce
chaos, the Lyapunov exponents of the closed loop system
should evolve in such a way that at least one of these Lyapunov
exponent measures remain positive.

It is observed that if the value of rotor inductance is
decreased (which may happen due to a decrease in the number
of turns in case a short circuit occurs or with the increase in
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Fig. 2: Dynamics of Lyapunov exponents at TL = 8.5.

reluctance) the system behaves chaotically irrespective of the
load TL. To decrease the rotor inductance (Lr), parameters
c1, c2, c5 must change as Lr is common in all of them. If the
modified rotor inductance is L

′
r , the new set of parameters

will be:

c1 =
Rr

L′
r

, c2 =
Lm

L′
r

Rr, c3 =
Rω

J
, c4 =

1

J
, c5 =

3

2

Lm

L′
r

np (11)

Let us define a new ratio r = Lr/L
′
r. To decrease the rotor

inductance ratio r is set as 10 and the modified set of param-
eters used for analysis becomes c1 = 136.7, c2 = 15.6, c3 =
0.59, c4 = 1176, c5 = 28.6, u20 = 4, kp = 0.001, ki = 1, k =
1.5, ωref = 181.1 with the load torque TL = 8.5 and the
initial states set to x1 = 0, x2 = 0.4, x3 = −200, x4 = 6.

The phase portraits obtained by simulating the system (6)
using the parameters given above are shown in the figures
(3)-(6):

Fig. 3: 2-dimensional phase portrait between x2 and x4.

Fig. 4: 2-dimensional phase portrait between x1 and x2.

Fig. 5: 2-dimensional phase portrait between x1 and x4.

From figures (3)-(6), we clearly infer that the system
exhibits chaotic nature because the response settles in an
attractor, which is a distinctive feature of chaotic systems.
The analysis presented here considers the parametric variations
arising from assuming rotor inductance as variable with load
torque as fixed whereas the chaotic behaviour of field oriented
control based induction motor model for variable load and by
varying parameters of PI controller can be found in [13]. To
justify the chaotic nature of the system as investigated above,
using phase portraits, we now try to present the analysis using
Hopf Bifurcations.

Hopf bifurcation gives us idea about the appearance or
disappearance of the periodic orbits through a local change
in the stability properties of a steady point. Thus it serves as
an essential tool for observing nonlinear dynamic response.
A distinctive feature of Hopf bifurcations is that the system
starts behaving unpredictably, thereby losing its periodicity,
for those values where the system is chaotic.
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Fig. 6: 3-dimensional phase portrait between x1 and x2 and
x3.

The bifurcation plots in figures (7)-(10) are plotted for
varying ratio of rotor inductance w.r.t. state variables. From
figures (7)-(10) we observe that the system loses its periodicity
and shows chaotic behaviour whenever the rotor inductance is
decreased by the ratio lying within {5, 15}. This implies that
the system is not chaotic when ratio is higher than 15.

Fig. 7: Hopf bifurcation for state x1 v/s r with c1, c2, c5
increased 10 times.

The analysis is further extended by observing the Lyapunov
exponents plot for the system with new set of parameters and
we can see from Fig. (11) that one of the exponents is always
positive proving that by parameter variation chaos can creep
into a non-chaotic system. To justify the inexistence of chaos
whenever the rotor inductance is decreased by a ratio higher
than 15, we present a Lyapunov exponent plot in Fig. (12)
which clearly shows that system is not chaotic.

Fig. 8: Hopf bifurcation for state x2 v/s r with c1, c2, c5
increased 10 times.

Fig. 9: Hopf bifurcation for state x3 v/s r with c1, c2, c5
increased 10 times.

VI. CONCLUSION

This paper presents analysis of chaos in an indirect field
controlled induction motor using Lyapunov exponents and
Hopf bifurcation methodology. The chaotification due to pa-
rameter variation indicates that chaos can again creep in the
motor if proper steps are not ensured to prevent change in
parameters. Several simulations were presented from which it
can be concluded that due to change in the internal parameters
of an induction motor chaos can reappear, which may not
be desirable for the operation of motor. The further work in
this direction could the development of a control algorithm
to maintain the system chaos-free even during parametric
variation.
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Fig. 10: Hopf bifurcation for state x4 v/s r with c1, c2, c5
increased 10 times.

Fig. 11: Variation of Lyapunov exponents with time at TL =
8.5 and ratio r = 10.
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