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Abstract - Actual power system exhibits various 

uncertainties. This paper focuses on theload uncertainty 

impact on potential variables at multiple frames. Various 

load models based on normal, exponential, beta, gamma 

and lognormal distribution have been used. Subjected to 

above uncertain inputs adverse case is identified by 

severity indexwhile considering line flow limits. The 

violation in stability limits due to load uncertainties have 

been limited by designing the constrained objective 

function to improve voltage profile and in turn reduce 

active and reactive power losses by minimizing severity 

index. A single objective problem is designed to minimize 

severity of bus index, subsequently minimum voltage 

deviation and minimum power losses were achieved while 

satisfying the operating constraints. The SVC is used as a 

control variable. The selection of candidate busesfor 

placement of SVCs is obtained by calculating the L-Index 

of load buses. Lastly, Teaching Learning based 

Optimization (TLBO) is used to obtain optimal value of 

control variable. The results are validated with the help of 

other optimization technique namely, Black Hole 

Algorithm (BHA). IEEE-30 bus system is used to 

implement the aforementioned problem. 

Keywords - Voltage Stability; load uncertainties; L-index; 

SVC; TLBO; BHA 

Nomenclature 

A. Abbreviations 

BHA Black Hole Algorithm 
SVC Static VAR Compensator 
PU Per Unit 
PDF Probability Density Function 

LVSI  Line voltage stability index 

TLBO Teaching Learning Based Optimization 

B. Notations 

eig  Minimum Eigen value 

J  Load flow Jacobean Matrix 

C. Parameters 

N  Normal Distribution 

exp  Exponential Distribution 

db  Deviation from Base Case 

B  Beta distribution 

G  Gamma distribution 

ln  lognormal distribution 

  Uncertain load adjustment factor either 

{N /exp / db / B / G / ln} 

  Output uncertainties on the unknown 

quantities which is a combined effect of (N, 

exp, db, B, G, ln) 

   Mean Value 

  Standard Deviation 

b  Load regulating parameter 

  Parameter used for deviation from base 

case load 

D. Constants 
0

DiP  Base case real power load at i
th

PQ bus in 

MW 

0

DiQ  Base case reactive power load at i
th

PQ bus 

in MVA 

kG  Conductance of line k in PU 

ijY  Magnitude of the admittance of the line 

connected between i& j in PU 

ij  Angle associated to Yijin degree 

miniV  Minimum value of PU voltage magnitude 

at i
th

 bus  

maxiV  Maximum value of PU voltage magnitude 

at i
th

 bus 

E. Variables 

V  Voltage magnitude in PU 

  Voltage angle in degree 

 DiP  Uncertain Real Power load in MW at i
th

 PQ 

bus 

 DiQ Uncertain Reactive Power load in MVAR 

at i
th

 PQ bus 



kV  Voltage magnitude in PU at k
th

 PQ bus 

after incorporating ψ uncertainties in input 

parameters 

0

kV  Voltage magnitude in PU at k
th

 PQ bus in 

base case 
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 i  Voltage angle at i

th
bus after inclusion of the 

effect of uncertainties in input parameters 

0

GiP  Active Power generation in MW at i
th

 bus 

in base case 

0

GiQ  Reactive Power generation in MVAR at i
th

 

bus in base case 



GiP  Active Power generation in MW at i
th

 bus 

due to the effect of uncertainties in input 



GiQ  Reactive Power generation in MVAR at i
th

 

bus due to the effect of uncertainties in 

input 

 

miniGQ Minimum value of reactive power 

generated in MVAR at i
th

 generator bus 

maxGiQ Maximum value of reactive power 

generated in MVAR at i
th

 generator bus 

miniGshQ  Minimum value of reactive power 

provided by shunt compensation 

in MVAR at i
th

 bus 

maxiGshQ  Maximum value of reactive power 

provided by shunt compensation in MVAR 

at i
th

 bus  

res

GiQ  Technical reactive reserves in MVAR 

LossP Real power losses in MW 

LossQ Reactive power losses in MVAR 



iV  i
th

Bus voltage magnitude in PU due to 

uncertain inputs 

I. INTRODUCTION 

 Nowadays power system operators and planners 
are facing the problem of voltage instability due to 
increasingly non-uniform demand of electricity by 
the consumers. Since power system industry 
undergoes restructuring day by day it becomes tough 
to maintain the system voltage within acceptable 
limits and hence, reliability of the system. In modern 
power systems especially, inaccuracies and 
uncertainties lead to aberrations in planning and 
operation. The uncertainty includes ambiguity in 
generation, transmission, distribution network, 
distributed generation, loads, energy reserve or 
economic factors. Hence there is a need to redefine 
the representation of power system components and 
the approach should be switched from deterministic 
to probabilistic one. The deterministic approach does 
not account for the inherent random nature of the 
resources at site, system behaviour and customer 

requirements etc.  In such situation, uncertainty in 
input parameters affects the transfer capability of the 
system. In recent decades, various load models have 
been proposed for voltage stability analysis [1, 2]. 
After exponential recovery load model [3] and 
adaptive load model [4] proposed according to the 
results from the measurement of actual power system 
load, dynamic load models have been introduced for 
voltage stability analysis. Byongjun and Ajjarapu [5] 
adopted generic load model for a piecewise global 
small-disturbance voltage stability analysis. 
Exponential recovery load model and adaptive load 
model have been adopted in [6] for voltage stability 
analysis where excitation and governor systems are 
in quasi steady state.Different ranges of parameters 
for the same load model have been reported in [5, 6]. 
The influence of dynamic load parameters on small-
disturbance stability [7] has been revealed via quasi-
optimisation procedure with the cost function, which 
reflects shift of selected Eigenvalues along the real 
axis when all load parameters varies within their 
constraints. To tackle uncertainties, probabilistic 
method has been introduced for power system study. 
An application of the probabilistic load flow (PLF) 
techniques to the expansion planning of power 
systems is presented in [8].  A method that 
reformulates the optimal power flow dispatch 
problem including power demand uncertainty is 
presented in [9].The uncertainty and sensitivity 
analysis for the system that involve both the 
subjective and stochastic uncertainty are discussed in 
[10]. In [11] a probabilistic small signal stability 
assessment (PSSSA) methodology based on the 
application of Monte Carlo approach for iterative 
evaluation, via modal analysis of small signal 
stability is presented. Available control measures 
must be utilized to ensure safe, secure and reliable 
operation of the system.  

In the proposed work the assessment and 
improvement of voltage stability iscarried out with 
due consideration of variation in load parameters. 
Six different load models are used namely Normal, 
Exponential, Beta, Gamma, Lognormal distribution 
and deviation from base loading at different load 
buses. The minimum Eigen value of the Jacobian 
matrix in load flow is obtained for all the 
incorporated uncertainties. The critical Eigen value 
determines the stableprobability of a power system. 
Stability margin is deduced from critical loading 
level, i.e. the loading at which system is 
„probabilistically‟ stable. Teaching Learning Based 
Optimization (TLBO)[12] is employed to find 
optimum value of control variable which satisfies the 
objective function, i.e. minimization of severity in L-
index, subjected to uncertain inputs. The results 
obtained are compared with Black Hole Algorithm 
(BHA) [13].The main objective of the proposed 
work is to provide probability density function (PDF) 
to input data and find the PDF of output data, 
secondly, finding healthy and critical mode of 
operation based on dynamic systems‟ Eigen value. 
Subsequently, with respect to critical case compute 
the most effective control action to boost reactive 
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power reserve in the system and hence improve 
voltage stability. Lastly, determine the optimal value 
of control variable to minimize severity index and 
hence enhance voltage stability and reduce overall 
losses. 

Section I gives brief insight to the previously carried 
out work. The uncertain load models are present in 
section II. Section III gives overview of TLBO. 
Section IV provides the problem formulation 
followed by methodology in section V. Section 
VIpresents the results of proposed method and its 
comparison withanother technique and conclusions 
are discussed in the last section. 

II. UNCERTAIN LOAD MODELLING  

 Numerous ambiguities are present in power 
system operation. One of them is dynamic variation 
in load parameter, which affects voltage stability 
margin assessment [14]. For the same load model, 
different ranges are presented in [7]. Dynamic load 
models were introduced to study about voltage 
stability. For analysing load variation in a day, 24 
hours are divided into 24 subsections. Uncertain load 
can be represented by probabilistic distributions 
functions and/or deviation by some scaling 
parameters.  

A. Normal distribution representation of 

uncertain load 

 The load bus no. 21 is chosen for modelling the 
load as normally distributed. The active and reactive 
load are modelled as normally distributed load with 
µ1 and σ1 being20 and 3 respectively for real load 
and 12 and 3 respectively for reactive load.The 
general formula for the pdf of the normal distribution 
for uncertain loadis [1, 16], 

( )

( )

∏
=

2σ

e
Xf

1

σ2

μX

D

2

1

2

1D

 (1) 

where, ∞≤XD ≤∞; σ1> 0 

µ1 is the mean value of the uncertain load (also 
called the location parameter) and σ1 is the standard 
deviation of the uncertain load (also called the scale 
parameter). 

B. Exponential distribution representation of 

uncertain load 

 The formula for the pdf of the exponential 
distribution for uncertain load is [1], 

( )

( )

b

e
Xf

b

μX

D

D
-

=  (2) 

where, XD ≥ µ and b > 0. 

Exponential distribution of uncertain load (both real 

and reactive) have been modelled at bus no. 

12.Here, exponential distributed real power load 

modelling is done as follows, 

( ) ( )
D

0
DiexpDi PfPΨP +=   (3) 

where, x = linearly spaced numbers  0

120 XP and b = 

1.8 Similarly, reactive load modelling is done. 

C. Beta Distribution representation of 

uncertain load: 

Most of the distributions are defined in terms of 

location and scale parameter but beta distribution is 

defined in terms of lower and upper bounds. 

However, location and scale parameter can be 

expressed in terms of lower and upper bounds. The 

formula for the pdf of the beta distribution for 

uncertain load is, 
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where, d ≤ XD≤ c; a>0; b>0  

a, b = Shape parameter 

c= upper bound 

d= lower bound 

Beta distributed real power load is at bus no. 24 with 

a=0.8 and b=0.75.Here, the beta distributed load 

modelling is done as follows, 

( ) ( )
D

0
DiBDi PfPΨP += (5)                     

Same modelling is performed for reactive load.  

D. Deviation from base case loading: 

 Bus no. 25 is selected for deviation from base 
case load modelling [1]. For real & reactive power 
loading the load varies from rated to 150% of rated 
load,which can be represented as follows, 

(i) Real load modelling 
    10

DidbDi PP           (6) 

(ii) Reactive load modelling 

    10

DidbDi QQ
                       (7) 

where, λ = scaling parameter (linearly spaced 

numbers between -1 to 1.5).  

E. Gamma Distributionrepresentation of 

uncertain load: 

The formula for the pdf of the gamma 

distribution for uncertain load is [1], 
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D
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(8) 

where, PD ≥ μ; a > 0 and b > 0. 

Here, the gamma distributed real and reactive power 

load modelling is done as follows, 

   DGDi PfP   
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   DGDi QfQ                                (9) 

F. Lognormal distributionrepresentation of 

uncertain load: 

Many probability distributions are not a single 

distribution, but are in fact a family of distributions. 

This is because the distribution has one or more 

shape parameter. It allows a distribution to take on a 

variety of shapes, depending on the value of the 

shape parameter. These distributions are particularly 

useful in modeling applications since they are 

flexible enough to model a variety of uncertainty 

load data sets. The following is the equation of the 

lognormal distribution for uncertain load [1], 
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where, PD ≥ μ; σ > 0 and a > 0 

„m‟ is the scale parameter. Lognormally distributed 

real power load is at bus no. 14 with μ=0.3451 and 

σ=0.5. Same modelling is performed for reactive 

load.   

III. OVERVIEW OF BHA AND 

TLBO 

A. Black Hole Algorithm  ‘BHA’ 

Black Hole technique was developed by A. 

Hatamlou [13], inspired by the black hole 

phenomenon. The BH algorithm is a population 

based method. In BHA, the evolution of population 

is done by moving all the candidates towards the 

best candidate in each iteration, namely, the black 

hole. In addition, there is the probability of crossing 

the event horizon during moving stars towards the 

black hole. Every star (candidate solution) that 

crosses the event horizon of the black hole will be 

sucked by the black hole. The absorption of stars by 

the black hole is formulated as follows: 

      txxrandtxtx iBHii 1

Ni ,...2,1     

      (11) 

Where  txi
 and  1txi

are the locations of 

the 
thi  star at iterations t  and 1t , respectively. 

BHx is the location of the black hole in the search 

space, rand  is a random number in the interval 

[0,1]. N is the number of stars (candidate solutions). 

Every time a candidate (star) dies, it is sucked in by 

the black hole, another candidate solution (star) is 

born and distributed randomly in the search space 

and starts a new search. This is done to keep the 

number of candidate solutions constant. The next 

iteration takes place after all the stars have been 

moved. The radius of the event horizon in the black 

hole algorithm is calculated using the following 

equation: 





N

i

i

BH

f

f
R

1

    

 (12) 

Where BHf  is the fitness value of the black hole 

and fi  is the fitness value of the 
thi  star. When 

the distance between a candidate solution and the 

black hole (best candidate) is less than R, that 

candidate is collapsed and a new candidate is 

created and distributed randomly in the search 

space. 

B. Teaching Learning Based optimization 

‘TLBO’ 

TLBO is a teaching-learning process inspired 

algorithm based on the effect of influence of a 

teacher on the output of learners in a class 

[12].Group of learners is considered as population. 

In the entire population, the best solution is 

considered as the teacher.Different design variables 

are considered as different subjects offered to the 

learners.learners‟ results are analogous to the 

„„fitness‟‟ value of the optimization problem. The 

working of TLBO is divided into two parts: 

„„Teacher phase‟‟ and „„Learner phase.‟‟ 

Teachers phase 

In the first part of the algorithm learners learn 

through the teacher. During this phase, a teacher 

tries to increase the mean result of the classroom 

from any value M1 to his or her level (i.e., TA). A 

teacher can move the mean of the classroom M1 to 

any other value M2 which is better than M1 

depending on his or her capability. Difference 

between the existing mean and new mean is given 

by: 

 
jFnewii MTMrMeanDifference _ (13) 

Where ir  is the random number between (0,1) and 

TF is the teaching factor can be either 1or 2. Based 

on this Difference mean the existing solution is 

updated according to following expression: 

iioldinew MeanDifferenceXX _,, 
                       

(14) 

Learner phase: 

It is the second part of the algorithm where learners 

increase their knowledge by interaction among 
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themselves. A learner learns new things if the other 

learner has more knowledge than him or her. 

Mathematically, at any iteration considering the two 

different learners    Xi  andXj 

Population after crossover 

  )()(  ,, jiijiioldinew XfXfifXXrXX 

 

  )()(  ,, jijiiioldinew XfXifXXrXX 
         

(15) 

IV. PROBLEM 

FORMULATION 

A single objective problem has been formulated 

with consideration of load uncertainties.  

a. Objective Function: 

Enhanced voltage stability can be achieved by 

minimizing the voltage stability indicator L-index 

value at every bus of the system and consequently 

global power system L-Index 

]min[ max1 Lf                  (16) 

While minimizing the L-index,minimum voltage 

deviation [14] due to input uncertainties is also 

obtained. 

0.1min 


PQN

k

kV
  (17) 

Minimumnetwork losses, either for the whole of the 

network or for certain section and lines, are non-

separable functions of dependent and independent 

variables [20]. 

      



tN

k

jijijik CosVVVVG  2min
22

(18)   

b. Equality constraints 

   jiijijj

i

iDGiDiGi CosYVVPPP  


 '

     (19)  

 
 jiijijj

i

iDGiDiGi SinYVVQQQ  


 '

   (20)(Static load flow equations with consideration 

of uncertain inputs are modelled as equality 

constraints) 

c. Inequality Constraints: 

Voltage limit is from 0.95 PU to 1.05 PU. 

maxmin iii VVV 


         (21)  

Reactive power generation for all the generators or 

voltage controlled buses. 

maxmin iGGiiG QQQ 


                          (22) 

The uncertainty incorporated in the system is limited 

by minimum to maximum uncertain load adjustment 

factor. 

maxmin      (23) 

Another inequality constraint is the reactive power 

provided by the SVCwhich is taken to be 0 – 27.5 

MVAR, eq. (24), which is 20% of total reactive 

demand corresponding to critical case. The optimal 

value of SVC is decided using the optimization 

techniques.  

maxmin iGshiGshiGsh QQQ              (24)  

d. Security constraints 

Load bus voltage limit is given by, 

maxmin iLLiiL VVV 


 (25) 

Transmission line loading limitis given by, 

maxiLLi SS 


 (26) 

While altering the loads it is to be noted that 

minimum Eigen value of load flow Jacobian should 

be greater than zero which means system  is not 

operating near collapse point, this can be limited by, 

  0Jeig          (27)  

After satisfying all the constraints effective reactive 

reserve can be calculated by,  

  


GiGi

res

gi QQQ 
max

 (28) 

V. METHODOLOGY 

The proposed approach to solve optimal 

reactive power compensation problem using TLBO 

technique is described here under. 

Step 1: Start the load flow with uncertain input 

values for dynamic load. 

Step 2: Compute minimum Eigen value of the load 

flow Jacobian for each input alteration.   

Step 3: Identify case having least Eigen value 

(closer to 0). 

Step 4: Calculate L-Index value for all the load 

buses [18], for most critical case using the formula 

(27). 

 
j

i iji

jjj
V

VF
LL G

LL



 


 1maxmax         

(29) 

Step 5: Rank the buses in descending order of L-

Index and select three buses with larger 

values as critical buses for placement of SVC. 

The SVChas been placed at bus number 16, 

17 and 19 as they are the weakest nodes in 

the system, thus reactive support is provided 

at them to boost the overall voltage profile of 

the system. 
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Step 6: Generate population for SVC, (0-27.5) of 

size „M‟ and distribute randomly, 

],........,[ )0()0(

2

)0(

1

)0(

MXXXS 
        (30) 

T

iDiii xxxX ],.....,[ )0()0(

2

)0(

1

)0( 
       (31) 

where,
jjjjij randxxxx )( min,max,min,

)0( 

  

Step 7: Compute the objective functionfor all the 

generations of the population. 

Step 8: Select all the feasible vectors and proceed 

through steps mentioned in section III. 

VI. RESULTS AND DISSCUSSIONS 

The proposed methodology has been implemented 

for optimal sizing and placement of reactive 

compensation device, i.e. SVC, while accounting 

the dynamic alterations in loads, on the IEEE –30 

bus system. The results have been compared with 

another optimization technique to verify the 

effectiveness and applicability of proposed 

methodology. Dynamics alterations are made 

corresponding to the base case values and the most 

critical case, having least Eigen value, is identified 

and reactive compensation value is decided 

correspondingly. The range for compensation is 

approximately 20% [21]of the reactive load 

requirement corresponding to critical case. The 

desired range for load bus voltage is taken as 0.95 – 

1.05 P.U. The base MVA of the system is 100. The 

complete data of this system is taken from [19]. The 

base case real load of the test system is 3.7245 

PUand reactive load is 1.3846 PU and real and 

reactive power losses are 0.26428 and 0.30659 PU 

respectively. Load flow is run for each dynamic 

alteration of load variation.Figure 1 and figure 2 

depict variation in active loads and reactive loads 

respectively.Change in minimum Eigen value of the 

load flow Jacobian matrix is plotted in figure 

3.Eigen value is highest corresponding to 3
rd

 

alteration i.e., 0.1888. For the healthy case real 

power load is 3.603 PU and reactive power load is 

1.376 PU Eigen value is lowest corresponding to 

20
th

 alteration i.e., 0.1819. For critical case real 

power load is 3.766 PU and reactive power load is 

1.411 PU. L – Index for buses [18] is used to 

identify weak buses in the system for critical case. 

The three buses having higher value of L – Index are 

the critical buses. Buses 16, 17 and 19 are the 

critical nodes corresponding to critical case. These 

buses are selected for application of reactive 

compensation through SVC. Bus 19 has the closest 

value to 1.0, thus it is a critical bus as far as voltage 

stability is concerned. 

 

 

 

 

 

 

 

 

Fig. 1 variation of real power load in MW 

 

Fig. 2 variation of Reactive power load in MVAR 
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Fig. 3 variation in minimum Eigen value of load flow 

Jacobean 

Here our objective is to minimise L-index, while 

focusing on reducing voltage deviation at load 

buses, voltage profile and losses have been reduced 

from those in the base case. This is clearly depicted 

in table 2 andfigure 5.Initially, 500 random particles 

are generated of 0 – 27.5 MVAR reactive 

compensation through SVC for the three selected 

buses. Maximum number of iterations are 50.The 

particles that satisfy all the inequality constraints are 

feasible solutions and further used in optimization 

process. The objective function is evaluated 

focusing on L-index at 19
th

 bus and voltage profile 

at 17
th

 bus as its voltage profile is the worst in base 

case.The optimum value of compensation, value of 

objective function and time elapsed in computation 

for each optimization technique is shown in table 1. 

The convergence of the objective function is 

depicted in figure 4. 

Fig. 4 Convergence of objective function 

The comparison in voltage magnitude, L- index, are 

presented in table 2. Bar graph representation of loss 

variation for critical case and after applying 

compensation consequent to each optimization 

technique is given in figure 6. The enhancement of 

stability in voltage can be very well deduced from 

the increase in reserve margins depicted in figure 5, 

as from generator end the voltage stability is directly 

related to reactive reserves available at the 

generators [21]. 

 

 

 

Table 1: Optimal Compensation at Selected Buses Using 

Different Optimization Techniques 

Sr. No. 
Selected buses for 

compensation 

Amount of compensation 

using different 

Optimization Technique 

BHA TLBO 

1 16 27.14 27.36 

2 17 26.38 27.08 

3 19 2.24 1.72 

Total Compensation ‘MVAR’ 55.76 56.16 

Value of objective function 0.05974 0.05968 

Time elapsed ‘sec.’ 860.12 2178.19 

Table 2:Voltage Profile for Critical Case and after Optimization 

Bus no. 

Before 

optimization 
After optimization 

Critical case TLBO BHA 



iV  L-Index 


iV  L-Index 


iV  L-Index 

1 1.000 0.000 1.000 0.0000 1.000 0.0000 

2 0.990 0.000 0.990 0.0000 0.990 0.0000 

3 0.959 0.0433 0.963 0.0439 0.963 0.0440 

4 0.956 0.0422 0.961 0.0427 0.961 0.0428 

5 0.972 0.0302 0.974 0.0304 0.974 0.0305 

6 0.952 0.0372 0.957 0.0378 0.957 0.0379 

7 0.949 0.0500 0.953 0.0504 0.953 0.0504 

8 0.950 0.0382 0.955 0.0388 0.955 0.0388 

9 0.976 0.0333 0.987 0.0323 0.987 0.0324 

10 0.942 0.0296 0.956 0.0315 0.956 0.0316 

11 0.976 0.0333 0.987 0.0323 0.987 0.0324 

12 0.978 0.0481 1.000 0.0422 1.000 0.0423 

13 1.000 0.0000 1.000 0.0000 1.000 0.0000 

14 0.972 0.0574 0.990 0.0480 0.990 0.0480 

15 0.973 0.0465 0.987 0.0361 0.987 0.0360 

16 0.936 0.0618 0.967 0.0719 0.967 0.0722 

17 0.932 0.0478 0.969 0.0553 0.969 0.0557 

18 0.947 0.0620 0.963 0.0538 0.962 0.0538 

19 0.936 0.0656 0.953 0.0597 0.953 0.0597 

20 0.936 0.0581 0.953 0.0540 0.953 0.0540 

21 0.944 0.0101 0.947 0.0118 0.947 0.0118 

22 0.950 0.0000 0.950 0.0000 0.950 0.0000 

23 1.000 0.0000 1.000 0.0000 1.000 0.0000 

24 0.962 0.0147 0.962 0.0164 0.962 0.0164 

25 0.979 0.0128 0.979 0.0150 0.979 0.0151 

26 0.963 0.0319 0.963 0.0345 0.963 0.0345 

27 1.000 0.0000 1.000 0.0000 1.000 0.0000 

28 0.940 0.0332 0.945 0.0338 0.945 0.0338 

29 0.978 0.0333 0.977 0.0333 0.977 0.0333 

30 0.965 0.0564 0.964 0.0563 0.964 0.0564 

Eigen Value 0.1819 0. 1852 0.1853 

Active Loss (MW) 27.21 27.18 27.21 

Reactive Loss (MVAR) 35.69 33.69 33.74 

Fig. 5 Reserve Variation Corresponding to Critical Case and 

After Optimization 
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Fig. 6 Losses Corresponding to Critical Case and After 

Optimization  

 

VII. CONCLUSION 

   In this paper, the method for optimal setting of 

reactive power control variables with the objective 

function of minimum L-index and simultaneously 

minimum voltage deviation and loss minimization 

under various load uncertainties are proposed. A 

single objective optimization problem considering 

various operating constraints have been formulated. 

The proposed algorithm has been applied to IEEE 

30- bus system. From the results, it can be 

confirmed that voltage magnitude is enhanced at all 

the weak buses and simultaneously the losses are 

also minimized. Overall results, agreeing with 

objective function, compensation value, time 

elapsed in computation, voltage profile enhancement 

and loss minimization are obtained from TLBO and 

BHA. But the better results are obtained 

corresponding to the TLBO. The results obtained by 

TLBO have been compared to the results obtained 

by BHA to validate its accuracy and effectiveness. 
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