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Abstract - In this paper, we obtain the general 

solution of a reciprocal type functional equation of 

the type 

 
And investigate its generalized Hyers-Ulam-Rassias 

stability in non -  Archimedian fields. We also 

establish Hyers-Ulam-Rassias stability, Ulam-

Gavruta-Rassias sta-bility and J.M. Rassias stability 

controlled by the mixed product-sum of powers of 

norms for the same equation. 

 

I. INTRODUCTION 

A significant question concerning the theory 

of stability of functional equations was raised by 
S.M. Ulam  [29] in 1940 in the University of 

Wisconsin. In 1941, D.H. Hyers  [14] was the first 

person who presented an a affirmative partial answer 

to the question of Ulam. In 1950, the theorem 

formulated by Hyers was generalized by T. Aoki  [4] 

for additive mappings. In 1978, Th.M. Rassias  [28] 

generalized Hyers' theorem which allows the Cauchy 

difference to be unbounded. In 1982, J.M. Rassias  

[21] gave a further generalization of the result of 

D.H. Hyers and proved theorem using weaker 

conditions controlled by a product of different 
powers of norms. In 1994, a generalization of Th.M. 

Rassias' theorem was obtained by P. Gavruta  [12] 

who replaced the unbounded Cauchy difference  

 

 

by a general control function. In 2008, J.M.  

 

Rassias et.al.  [22] discussed the stability of quadratic 

functional equation 

f(mx + y) + f(mx – y) = 2f(x + y) + 2f(x – y)  

 

 
 

 

 

+ 2(m2 – 2) f(x) – 2f(y) 

for any arbitrary but fixed real constant m with m≠0; 

m≠±1; m≠± 2  using mixed product-sum of powers 

of norms. Several stability results have been recently 

obtained for various equations, also for mappings 
with more general domains and ranges (see  [7], [8], 

[9], [11], [13],  [18], [19], [20], [23]). Many research 

monographs are also available in functional 

equations, one can see  ([1], [2], [3], [10], [15], [16],  

[17]). 

In 2010, K. Ravi and B.V. Senthil Kumar  

[24] obtained Ulam-Gavruta-Rassias stability for the 

reciprocal functional equation 
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 (1.1) 

where f : XY is a mapping on the spaces of non-

zero real numbers.  The reciprocal function 

g(x)=
x

c
is a solution of the functional equation (1.1). 

K.Ravi, J.M. Rassias and B.V. Senthil 

Kumar [25] discussed the Ulam stability for the 
reciprocal functional equation in several variable of 

the form 

   (1.2) 

for arbitrary but fixed real numbers ( α1; α2;. . . ,αm) 

≠(0; 0;. . . ; 0); so that 0 < α= α1 + α2 + . . . + αm = 

1
1

  i

m

i
   and f : XY with X and Y are the 

spaces of non-zero real numbers. 

Later, J.M. Rassias and et.al. [26] introduced 

the Reciprocal Difference Functional equation(1.3) 
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and the Reciprocal Adjoint Functional equation(1.4) 
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and investigated the generalized Hyers-Ulam-Rassias 

stability of the equations  (1.3) and  (1.4).   

A.Bodaghi and S.O. Kim [5] introduced and 

studies the Ulam-Gavruta-Rassias stability for the 

quadratic reciprocal functional mapping f : X Y 

satisfying the Rassias quadratic reciprocal functional 

equation 

 (1.5) 

The quadratic reciprocal function f(x)=
2x

c
is a 

solution of the functional equation (1.5).  Recently, 

A. Bodaghi and Y.Ebrahimdoost  [6] generalized the 

equation (1.5) as (1.6) 

 Where aZ with a ≠0 and established the 

generalized Hyers-Ulam-Rassias stability for the 

functional equation (1.6) in non-Archimedean fields. 

K.Ravi et al [27] investigated the 
generalized Hyers-Ulam-Rassias stability of a 

reciprocal-quadratic functional equation of the form 

(1.7) 

 In intuitionistic fuzzy normed spaces.  In this paper 

we obtain the general solution of a reciprocal type 

functional equation of the type (1.8) 

    

And investigate the generalized Hyers-

Ulam-Rassias stability of the equation (1.8) in non-

Archimedean fields.  We also establish Hyers-Ulam-

Rassias stability, Ulam-Gavruta-Rassias stability and 

J.M. Rassias stability controlled by the mixed product 

sum of powers of norms for the equation (1.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. PRELIMINARIES 

A non-Archimedean field is a filed  A 

equipped with a function (valuation) | . | from A into 

(0,∞) such that for all r,sA  

 

(i) | r | = 0 if and only if r = 0  

 
(ii) | rs | = | r | | s | and  

 

(iii) | r + s | ≤ max { | r |, | s | }.  

 

Clearly | 1 | =  | -1 |  = 1 and | n | ≤ 1 for all 

n  N. 

 

We always assume, in addiition, that | . | is non-

trivial, i.e., there exists an 

 

a0   A such that | a0 | ≠ 0, 1. 
 

An example of a non-Archimedean 

valuation is the mapping | . |taking every-thing but 0 

into 1 and | 0 | = 0. This valuation is called trivial. 

Another example of a non-Archimedean valuation on 

a  field A is the mapping. 

Let p be a prime number. For any non-zero 

rational number x = pr

n

m
 in which m and n are 

coprime to the prime number p. Consider the p-adic 

absolute value |x|p = p-r on Q. It is easy to check that | 

. | is a non-Archimedean norm on Q. The completion 

of Q with respect to | . | which is denoted by Qp is 

said to be the p-adic number field. Note that if p > 2, 

then |2n| = 1 for all  
integers n. 

 

            III. GENERAL SOLUTION OF EQUATION 

 

Theorem 3.1. Let f : R*  R be a function. Then f 

satisfies  (1.1) if and only if f satisfies  (1.8). Hence  
(1.8) is also a reciprocal mapping whose solution is 

f(x) = 
x

c
 . 

Proof: 

0 if r=0 

r

1
 if r >0 

-
r

1
 if r < 0 

| r | 

= 



ISSN: 2231-5381                                         http://www.ijettjournal.org                                             Page 156 

  

Let f satisfy (1.1). Replacing (x,y) by 








 

5

32
,

5

23 yxyx
 in  (1.1), we arrive at (1.8).  

Conversely, suppose f satisfy (1.8).  Replacing (x,y) 
by (3x – 2y, 3y – 2x) in  (1.8), we obtain (1.1).  This 

completes the proof of Theorem 3.1. 

 

IV. GENERALIZED HYERS-ULAM STABILITY OF  

(1.8) 

In the following theorems and corollaries, 

we assume that A and B be a non-Archimedean field 

and a complete non-Archimedean field, respectively. 

From now on, for a non-Archimedean field A, we put 

A* - {0}. For convenience, let us define the 

difference operator Df: A* X A* B by 

 
For all x,y A*.  Theorem 4.1. Let  : A* x A* 

B* be a function such that (4.1) 

 
   

For all x,yA*.  Suppose that f: A*  B is a 

mapping satisfying the inequality  

  
   (4.2) 

For all x,yA*. Then there exists a unique 

reciprocal mapping r: A*  B such that (4.3) 

  
For all x A*. 

Proof: Replacing (x, y) by (x, x) inb (4.2), we 

get(4.4) 

  

For all  xA*.  Now, replacing x by 
2

x
 in (4.4) 

we obtain (4.5) 

   

For all xA*.  Plugging x by 
n

x

2
 in (4.5) and 

multiplying by 

n

2

1
, we have (4.6) 

  

For all xA*.  Thus the sequence 

















nn

x
f

22

1
 is Cauchyby (4.1) and (4.6).  

Completeness of the non-Archimedean space B 

allows us to assume that there exists a mapping r so 

that (4.7) 

   
For each xA* and non-negative integers n, we have 

(4.8) 

 Applying (4.7) and letting n   , we find that the 

inequality (4.3) holds. From (4.1), (4.2) and (4.7) we 

have for all x,y A* 

 
Hence the mapping r satisfies (1.8). By Theorem 3.1, 

the mapping r is reciprocal. Now, let R: A* B be 

another reciprocal mapping satisfying (4.3).  Then we 

have 

 
For all xA*, proving that r is unique, which 

completes the proof. 

Theorem 4.2.  Let  : A* x A*  B* be a function 

such that (4.9) 
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For all x,yA*. Suppose that f: A*   B is a 

mapping satisfying the inequality (4.2) for all 

x,yA*.  Then there exists a unique reciprocal 

mapping r: A*B such that(4.10) 

Fo
r all xA*. 

Proof: Replacing (x,y) by (x,x) in (4.2) and 
multiplying by |2|, we get  (4.11) 

  
For all xA*.  Switching x to 2nx in (4.11) 

and multiplying by |2|n, we have (4.12) 

           
For all xA*.  As n   in (4.12) and 

using (4.9), we see that the sequence { 2n f(2nx) } is a 

Cauchy sequence.  Since B is complete, this Cauchy 

sequence converges to a mapping r: A* B defined 

by (4.13) 

   
   

For each xA* and non-negative integers n, we 

have(4.14) 

  

Applying (4.13) and letting n   , we 

find that the inequality (4.10)  holds.  From (4.9), 

(4.2) and (4.13), we have for all x, yA*. 

 
Hence the mapping r satisfies (1.8).  By 

Theorem 3.1, the mapping r is reciprocal.  Now, let 

R: A* B be another reciprocal mapping satisfying 

(4.10). Then we have 

 
For all xA*, which proves that r is unique. 

Corollary 4.3.  For any fixed K1≥0 and α≠-1, if f: A* 
B  satisfies  

 

For all x,yA*, then there exists a unique 

reciprocal mapping r: A*  B satisfying (1.8) and  

 
For every xA*. 

Proof: the required results are obtained by choosing 

   
 yxkyx  1, , for all x,yA* in 

Theorem 4.1 with α < -1 and in Theorem 4.2 with α > 

-1 and proceeding by similar arguments as in 

Theorems 4.1 and 4.2. 

Corollary 4.4.  Let f: A*  B be a mapping and let 

there exist real numbers a,b: α = a + b   ≠ -1.  Let 

there exists k2 ≥0 such that 

 
For all x,yA*.  Then there exists a unique 

reciprocal mapping r: A* B satisfying (1.8) and  

 
For every  xA*. 

Proof: Considering   (x,) = k2 |x|a  |y|b , for all 

x,yA* in Theorem 4.1 with α < - 1 and in Theorem 

4.2 with α > -1, the proof of the corollary is complete. 

Corollary 4.5.  Let k3 ≥ 0 and α ≠ -1 be real 

numbers, and f: A*  B  be a mapping satisfying 

the functional inequality  

 
For all x,yA*.  Then there exists a unique 

reciprocal mapping r: A*  B satisfying (1.8) and  

 
For every xA*.   

Proof: The proof follows immediately by taking 

 (x,y)=  












yxyx 22  in Theorem 4.1 

with α < -1 and in Theorem 4.2 with α > -1. 
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