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Abstract - In this paper, we obtain the general
solution of a reciprocal type functional equation of

the type

O N 2r+3
f) (357

- (342 2r+43
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And investigate its generalized Hyers-Ulam-Rassias
stability in non - Archimedian fields. We also
establish  Hyers-Ulam-Rassias  stability, Ulam-
Gavruta-Rassias sta-bility and J.M. Rassias stability

controlled by the mixed product-sum of powers of
norms for the same equation.
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I. INTRODUCTION

A significant question concerning the theory
of stability of functional equations was raised by
S.M. Ulam [29] in 1940 in the University of
Wisconsin. In 1941, D.H. Hyers [14] was the first
person who presented an a affirmative partial answer
to the question of Ulam. In 1950, the theorem
formulated by Hyers was generalized by T. Aoki [4]
for additive mappings. In 1978, Th.M. Rassias [28]
generalized Hyers' theorem which allows the Cauchy
difference to be unbounded. In 1982, J.M. Rassias
[21] gave a further generalization of the result of
D.H. Hyers and proved theorem using weaker
conditions controlled by a product of different
powers of norms. In 1994, a generalization of Th.M.
Rassias' theorem was obtained by P. Gavruta [12]
who replaced the unbounded Cauchy difference

by a general control function. In 2008, J.M.
Rassias et.al. [22] discussed the stability of quadratic

functional equation
f(mx +y) + f(mx —y) = 2f(x +y) + 2f(x —y)

+ 2(m*— 2) f(x) — 2f(y)

for any arbitrary but fixed real constant m with m#0;
m#t]; m#£A: ﬁ using mixed product-sum of powers
of norms. Several stability results have been recently
obtained for various equations, also for mappings
with more general domains and ranges (see [7], [8],
[9]1, [11], [13], [48], [19], [20], [23]). Many research
monographs are also available in functional
equations, one can see ([1], [2], [3], [10], [15], [16],

[17D).

In 2010, K. Ravi and B.V. Senthil Kumar
[24] obtained Ulam-Gavruta-Rassias stability for the
reciprocal functional equation

(s y)= LT
f(x)+ f(y)
(1.1)
where f: X =Y is a mapping on the spaces of non-
zero real numbers. The reciprocal function

C
g(x)=—s a solution of the functional equation (1.1).
X

K.Ravi, J.M. Rassias and B.V. Senthil
Kumar [25] discussed the Ulam stability for the
reciprocal functional equation in several variable of
the form

- i | = H:il (z;)
! ;O?I 2int {Q'i (H;nzl.jgég' f{i*;)ﬂ

1.2)
for arbitrary but fixed real numbers ( ay; o;. . . ,0m)
#0;0;...;0);s0that0<a=ay;+op,+...+ay=

:zlai #1 and f: X— Y with X and Y are the

spaces of non-zero real numbers.
Later, J.M. Rassias and et.al. [26] introduced
the Reciprocal Difference Functional equation(1.3)

X+Yy ) f(y)
f(Tj_ )=+ 1)
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and the Reciprocal Adjoint Functional equation(1.4)

(8o o= 2110
2 f(x)+ f(y)

and investigated the generalized Hyers-Ulam-Rassias
stability of the equations (1.3) and (1.4).

A.Bodaghi and S.O. Kim [5] introduced and
studies the Ulam-Gavruta-Rassias stability for the
quadratic reciprocal functional mapping f: X =Y
satisfying the Rassias quadratic reciprocal functional
equation

fQr+y)+f22-y)=

(1.5)
. . . C .
The quadratic reciprocal function f(x)=—is a
X

solution of the functional equation (1.5). Recently,
A. Bodaghi and Y.Ebrahimdoost [6] generalized the
equation (1.5) as (1.6)
, , 2 (@) f ) (e + 1)*f(y) + a*f()]
J(la+ 1)z +ay) + f((a+1)z —ay) ((’a+1)2f(y)*ﬂ?f(.r))2
Where aeZ with a #0 and established the
generalized Hyers-Ulam-Rassias stability for the
functional equation (1.6) in non-Archimedean fields.
K.Ravi et al [27] investigated the
generalized Hyers-Ulam-Rassias stability of a
reciprocal-quadratic functional equation of the form

(1.7
r{a)rly)[5r@) + 5r(4) + 87 @ 0]
{Q-r(zf) +2r(y) + 5\/-r(r)r(y)r

In intuitionistic fuzzy normed spaces. In this paper
we obtain the general solution of a reciprocal type
functional equation of the type (1.8)

() £ (22

r(z+2y) +r2z+y)=

flz+y) =

FE) + 1 (5557)

And investigate the generalized Hyers-
Ulam-Rassias stability of the equation (1.8) in non-
Archimedean fields. We also establish Hyers-Ulam-
Rassias stability, Ulam-Gavruta-Rassias stability and
J.M. Rassias stability controlled by the mixed product
sum of powers of norms for the equation (1.8).

0if r=0
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1. PRELIMINARIES

A non-Archimedean field is a filed A
equipped with a function (valuation) | . | from A into
(0,00) such that for all r,s€ A

(i) [r|=0ifandonlyifr=0
(i) [rs|=|r||s]and
(iii) [r+s|<max{|r|,|s|}
Clearly|1|=|-1] =1and |n| <1 for all
ne N.

We always assume, in addiition, that | . | is non-

trivial, i.e., there exists an
a8 € Asuchthat|ag|#0, 1.

An example of a non-Archimedean
valuation is the mapping | . |taking every-thing but 0
into 1 and | 0 | = 0. This valuation is called trivial.
Another example of a non-Archimedean valuation on
a field A is the mapping.

Let p be a prime number. For any non-zero

. m . .
rational number x = p"— in which m and n are
n

coprime to the prime number p. Consider the p-adic
absolute value |x|, = p” on Q. It is easy to check that |
. | is a non-Archimedean norm on Q. The completion
of Q with respect to | . | which is denoted by Q, is
said to be the p-adic number field. Note that if p > 2,
then |2"| = 1 for all

integers n.

I1l. GENERAL SOLUTION OF EQUATION

Theorem 3.1. Let f : R* — R be a function. Then f
satisfies (1.1) if and only if f satisfies (1.8). Hence
(1.8) is also a reciprocal mapping whose solution is

f(x) = ¢ .
X

Proof:
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Let f satisfy (1.1). Replacing (x,y) by

(3x+ 2y 2x+3yj
, in (1.1), we arrive at (1.8).
5 5)
Conversely, suppose f satisfy (1.8). Replacing (X,y)
by (3x — 2y, 3y — 2x) in (1.8), we obtain (1.1). This
completes the proof of Theorem 3.1.

IV. GENERALIZED HYERS-ULAM STABILITY OF
(1.8)

In the following theorems and corollaries,
we assume that A and B be a non-Archimedean field
and a complete non-Archimedean field, respectively.
From now on, for a non-Archimedean field A, we put
A* - {0} For convenience, let us define the
difference operator Dy. A* X A* — B by

f (SI:Qy) f (21:31,.!)
De(z,y) = f(x — = -
f( y) f( +y) f(ga 2)+f(21+3)

For all x,y € A*. Theorem 4.1. Let @§: A* x A*
— B* be a function such that (4.1)

i /1 1 .
@ W;‘l-:wy =

2
For all x,ye A*. Suppose that f. A* —>B is a
mapping satisfying the inequality

Dy(z,y)| < d(z,y)

(4.2)
For all x,ye A*. Then there exists a unique
reciprocal mapping r: A* — B such that (4.3)

/1 1y,
For all x € A*.

Proof: Replacing (x, y) by (X, x) inb (4.2), we
get(4.4)

£(22) — £ ()

lim
Tt—00

2

|f (1’] - r(;r)\ < max

< ¢(z, )

X
For all xe A*. Now, replacing x by E in (4.4)
we obtain (4.5)

o -37(5)| <4 (3:3)

X
For all xe A*. Plugging x by 2—n in (4.5) and

n

, we have (4.6)

1
multiplying by ‘E

1 T 1 T " sz =z
() -7 (75) §|§ o (7r3)

For all xeA*, Thus the sequence

{%f(%)} is Cauchyby (4.1) and (4.6).

Completeness of the non-Archimedean space B
allows us to assume that there exists a mapping r so
that (4.7)

r(z) = nlﬂ?La_f (2)

For each x € A* and non-negative integers n, we have

(4.8)
n—-1
N EESR )

13-
()05

Sma_x{ O<2<n}
1
< max< [—

T T .
5 ’;(2[“‘21“):0££<n}'
Applying (4.7) and letting n — oo, we find that the
inequality (4.3) holds. From (4.1), (4.2) and (4.7) we
have for all x,y € A*

i

. 1 T Yy
| Dr(z,y)| = lim 5 (gn ‘)n)‘
_ 1" sz g
< hm s (2n On) =0

Hence the mapping r satisfies (1.8). By Theorem 3.1,

the mapping r is reciprocal. Now, let R: A* — B be

another reciprocal mapping satisfying (4.3). Then we
1

P (e
) 120 o)

2

1" oz T
T ot 1 <
_phj}og}gg)nm e 2 (2“7“ Q”PH) SN

=0

P

Ir(z) - R(z)| = lim
P40

< lim

P00

For all xe A*, proving that r is unique, which
completes the proof.

Theorem 4.2. Let @: A* x A*
such that (4.9)
lim [2|"¢ (2"2,2"y) =0

N—00

— B* be a function
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For all x,ye A*. Suppose that f: A* — B is a
mapping satisfying the inequality (4.2) for all
X,y€ A*. Then there exists a unique reciprocal
mapping r: A* — B such that(4.10)

f(z)—r(z)| < max{\?ﬁ“q‘} (2'z,2'z) :i e NU{0}}

rall xe A*.
Proof: Replacing (x,y) by (x,x) in (4.2) and
multiplying by |2|, we get (4.11)

2f(2z) — f(z)| < |2|¢(z, z)
For all xe A*. Switching x to 2"x in (4.11)
and multiplying by |2|", we have (4.12)
an (_2“:17) _ Qn-Hf (QTI—IT) ‘ < ‘2‘““@ (2111: an)
For all xe A*. As n— o in (4.12) and
using (4.9), we see that the sequence { 2" f(2"x) } is a
Cauchy sequence. Since B is complete, this Cauchy

sequence converges to a mapping r: A* — B defined
by (4.13)

r(r) = lim 2"f (2"x).

Mn—0o0

Fo

For each xe A* and non-negative integers n, we
have(4.14)

|2 (2"z) — f(x)| = ZQH f(2 ) = 2f (22)
i=0

< max{‘?”lf (2”11’) -2'f (211)‘ 0<i< n}

< max{ 2 (QII,TI) 0<i< n} .

Applying (4.13) and letting n — o, we

find that the inequality (4.10) holds. From (4.9),
(4.2) and (4.13), we have for all x, ye A*.
|D,(z,y)| = hm [2|"|D; (2"z, 2"y)|

< lim |2|"¢ (2"x,2"y) = 0.

Hence the mapping r satisfies (1.8). By
Theorem 3.1, the mapping r is reciprocal. Now, let
R: A* — B be another reciprocal mapping satisfying
(4.10). Then we have
|R(z) = r(z)| = lim [2I"|R(2z) —r (Pz)|

< lim |2[Pmax {|R (2°z) — f (2P2)|,|f (2Px) — v (2Px)|}
p—oo

< lim lim max {max{ 2[H+r+ty (2“?1’.2’"’1’) p<i<qg+p
OO0 J—00

p=oog
=0
For all xe A*, which proves that r is unique.

Corollary 4.3. For any fixed K;>0 and o#-1, if f: A*
— B satisfies

Dy(z,y)| < ko (2" + [y]")

For all x,y € A*, then there exists a unique
reciprocal mapping r: A* — B satisfying (1.8) and

IQQTrlx 2|, fora< -1

Ay |z|*, fora> -1

flz) = r(z)] <

For every x e A*.
Proof: the required results are obtained by choosing

¢(X, y): kl([x|“ +|y|a), for all xyeA* in
Theorem 4.1 with a < -1 and in Theorem 4.2 with o >
-1 and proceeding by similar arguments as in
Theorems 4.1 and 4.2.

Corollary 4.4. Let f: A* — B be a mapping and let

there exist real numbers a,b: o =a+b #-1. Let
there exists k, >0 such that

|De(z,y)| < ko |z|* |y|b

For all x,ye A*. Then there exists a unique
reciprocal mapping r: A* — B satisfying (1.8) and

ks (4]

f(-l') — -]’(IH S {|2|”‘ r o, fO?" o < 71

2k |z|™, fora> -1

For every xe A*.

Proof: Considering ¢ (x,) = k2 |x} P, for all
X,y € A* in Theorem 4.1 with o < - 1 and in Theorem
4.2 with o> -1, the proof of the corollary is complete.
Corollary 4.5. Let k3 > 0 and a # -1 be real

numbers, and f: A* — B be a mapping satisfying
the functional inequality

1D4(z,9)| < ks (|l [y1% + (2l + 191"
For all x,ye A*. Then there exists a unique
reciprocal mapping r: A* — B satisfying (1.8) and

%;} x|*, fora< -1

Gks |2|*, fora > -1

flz) —r(z)| <

For every x € A*,
Proof: The proof follows immediately by taking

é (x.y)= (|x|‘;|y|z +Qx|a +|y|” )j in Theorem 4.1
wit}l‘# o < -1 and in Theorem 4.2 with o > -1.
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