
International Journal of Engineering Trends and Technology (IJETT) – Volume 56 Number 1- February 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 20

Parallel Multiple Key Sort Algorithm for

Traverse Data Set
C. P. E. Agbachi

Departmentof Mathematical Sciences, Kogi State University

Anyigba, Kogi State, Nigeria

Abstract— Sorting traditionally, is based on a single

key algorithm. Even in multi-key situations, the

mode of operation centres on one key at a time.

Outside this model, the procedure is unsatisfactory

making a search for adaptive solution imperative. A

case in point is traverse data collection in

Geomatics Engineering, where sorting is required
for the purpose of reconstructing survey topology.

This process has always been fraught, especially in

large networks. Thus, this paper discusses the

methods and techniques of a successful model sort in

synchronised three-key data structures.

Keywords—Total Station, 3-Tripod Setup,

Bowditch Adjustment, Objects.

I. INTRODUCTION

A traverse is one of the established methods of

surveying for horizontal positions. In the early days,

it had to compete with other forms such as

triangulation and trilateration, involving angle and

distance measurements respectively. With the advent

of digital instruments, Total Stations, all the modes

have evolved into one category, Traverse. It is thus,

with detail descriptions, the mainstay in practice of

Surveying Engineering [1, 2].

Fig. 1 Traverse Survey

A traverse, Fig 1, is characterised by setups

defined by the instrument position, reference station
and then the forward station. In what has come to be

known as 3-tripod setup, the instrument station

moves to the forward station, while the reference

station is dismantled and setup in the next forward

point. This routine starts from known positions and

ends likewise in control points. Computation is

mostly by Bowditch Adjustment [3].

In normal circumstances, surveys follow strict

order of design in topology. Nevertheless, field work

in recent days are dynamic, may involve as many as

100 setups in networks of pipeline construction and

even more in larger layouts. Before now, such

surveys tend to be computed on patch basis, a

procedure that leaves room for inconsistency. Ideally
given computing resources, the entire survey can be

computed in a single frame of adjustment. However,

because the surveys would have been carried out in

batches by different groups, such a contiguous data

set would be possible only through sorting.

A. Field Model

Sorting in the field arises due to incomplete

surveys that are concluded at a later time. A case in

point is illustrated below.

Fig. 2 Two-Day Survey

Imagine an observation at I with respect to

stations R and F on day 1. If the work could not

continue until the next day, connection is maintained

through the subsequent observation. Note that the

instrument is now setup at station F with reference to

station I.

There could also be a reverse situation where

tasks in Day 1 and Day2 are interchanged, such that

the bulk of the work is carried out in the first day.

Then on the last day, the connection to starting

controls I and R is established.

Other situations abound in a large network of

traverses, where the constraints of time demand as a

priority the completion of survey. That leaves the

sorting into survey topology and computability, an
undertaking in the office.

International Journal of Engineering Trends and Technology (IJETT) – Volume 56 Number 1- February 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 21

B. Sort Algorithm

There are three keys to be considered, in this

process. These are:

1. Instrument Station

2. Reference Station

3. Forward Station

Upon examination, every setup is characterised by

Sn = {Rn-1, In, Fn+1} where n is the station number in

the sequence. Rn-1 is the previous or reference target
station and In is the instrument station. Likewise Fn+1

is the next or forward target station.

For every Sn and Sn+1 = {Rn, In+1, Fn+2}, it can be

shown [4, 5] that Sn ∩ Sn+1 = {I, F} --- (1)

Similarly, Sn ∩ Sn-1 = {R, I} --- (2)

Thus, Sort algorithm requires parallel evaluation

of three keys to determine a location for insertion.

1. Forward Search:

Fig 3

The forward search aims to append an observation
to the current instrument position, Fig. 3, in line with

survey topology.

Taking the current location Sn = {R, I, F}, and

option 1, Sn+1 = {F, J, O} it is clear that Sn ∩ Sn+1 =

{F}. Therefore there is no continuity by this option.

On the other hand, for Sn+1 = {I, F, J}, Sn ∩ Sn+1 =

{I, F}. Hence, the connection exists. Further details

maybe expressed as follows:

At the current location, the next setup meets the
following conditions:

1. Instrument Station is the Reference

Station at the next setup.

2. Forward Station is the Instrument Station

at the next setup.

2. Reverse Search:

Fig 4

Reverse search arises in order to insert a setup
before the current location, Fig. 4, in the topology.

Thus, considering Sn = {P, Q, Z} and option 1, Sn-1 =

{L, M, N}, Sn ∩ Sn-1 = {Ф}. For option 2, Sn ∩ Sn-1 =

{P}. However in option 3,Sn ∩ Sn-1 = {P, Q}. Hence,

the process leads to required solution. Further details

may also be expressed as follows:

At the current location, the previous setup meets

the following conditions:

1. Instrument Station is the Forward Station

in the preceding setup.
2. Reference Station is the Instrument

Station in the preceding setup.

II. DATA STRUCTURES

Data Structure is a model of organisation and

information description [6]. In this respect, the task

is modelling of a setup with a view to accomplish

the Sort Algorithm. Towards this, there are two

object structures to consider. The first is the

description of observations at the instrument station.
The second is object representation of the field book,

a database, to which surveyors book, reduce and sort

observations.

A. Setup

 SetUp Frame
Data1 Reference Station

Data2 Instrument Station

Data3 Forward Station

Data4 :

 :

Method :

Table 1

International Journal of Engineering Trends and Technology (IJETT) – Volume 56 Number 1- February 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 22

Setup is based on Knowledge Representation and

starts with a conceptual design, Table 1, in form of a

Frame [7, 8]. This is characterised by slots or

attributes and methods. There are thus slots for Ref

Stn, InstrStn and Fwd Stn. Also included are

measurements, directions, angles and distances.
Then the Methods are procedures that manipulate

data for desired result. For instance, within the

Frame, methods reduce the observed angles and

perform corrections to observed slope distances.

type

PRedTravRec = ^TRedTravRec;

TRedTravRec = record

 StnName,RefStn,FwdStn: array [0..5] of Char;

 InstrHt,TgHtRO,TgHtFwd: array [0..5] of Char;

 AngleRO,AngleFwd,ElevRO,ElevFwd: array[0..15] of Char;

 .

 .

 .

 Easting,Northing,Height: array [0..15] of Char;

 EastingRO,NorthingRO,HeightRO: array [0..15] of Char;

 EastingFwd,NorthingFwd,HeightFwd: array [0..15] of Char;

end;

PRedTravObj = ^TRedTravObj;

TRedTravObj = object(TObject)

 TravRecord:TRedTravRec;

 constructorInit(Fill:Boolean);

 constructor Load(var S:TStream);

 procedure Store(var S:TStream);

 destructor Done; virtual;

 end;

Fig. 5

Frames translate into programmable object

representation, Fig. 5, through a supporting language.

A typical example is Pascal as described in [9, 10].

B. Field Book Container

Field book is a container or database object that

holds the observations. It is analogous to actual field
book in that it stores the observations. Furthermore,

sorting usually performed manually in the field book

is carried out by methods in the database object.

A comprehensive discussion and description of

the container can be found in [11]. Of note, is the

room for adaptation to use in Traverse. Hence the

field book object has the form as described below.

PTravFieldBook = ^TTravFieldBook;

TTravFieldBook = object(TCollection)

 function Found(Item: Pointer): Boolean; virtual;

 functionSearchForPosition(Item: Pointer): Integer; virtual;

 procedure Filter(Item: Pointer); virtual;

 procedure Insert(Item: Pointer); virtual;

 procedure Error(Code, Info: Integer); virtual;

end;

Fig 6

In this, of significance are the methods,

SearchForPosition, and Insert. By this arrangement,

observations can be downloaded in any order and

sorted into topology of Traverse, Fig. 7.

Fig. 7 Triple-Key Sort

III. IMPLEMENTATION

Implementation centres on the operations of key

procedures, Filter, Found, Insert and

SearchForPosition.

A. Filter

procedureTTravFieldBook.Filter(Item: Pointer);

begin

 if (count > 0) or TravFileMode then

 begin

 Reject :=NotValid(Item) or Found(Item);

 end;

end;

Fig. 8

The aim of this routine is to avoid erroneous

fields in the data set. Whereas such validation may

have been performed during data capture, it is

always better, from experience, to guard further
against surreptitious input. So it is not conceivable

that key fields would have identical names. Nor

could the data be valid if the fields are empty.

Any other important checks can also be

performed in this routine to determine acceptance or

otherwise of the data set. For instance duplicate

entries are not required.

Filter returns the result of processing functions

NotValid and Found in Reject, a Boolean variable,
Fig 8.

B. Found

functionTTravFieldBook.Found(Item:Pointer): Boolean;

var SearchKey,A1,A2, A3: string; F:PRedTravObj;

 functionItExists(OldRec:PRedTravObj): Boolean; far;

 var A,B,C :String;

 begin

 A :=StrPas(OldRec^.TravRecord.RefStn);

 B :=StrPas(OldRec^.TravRecord.StnName);

 C :=StrPas(OldRec^.TravRecord.FwdStn);

 ItExists := ((A + B + C) = SearchKey);

 end;

International Journal of Engineering Trends and Technology (IJETT) – Volume 56 Number 1- February 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 23

begin

 A1 := StrPas(PRedTravObj(Item)^.TravRecord.RefStn);

 A2 := StrPas(PRedTravObj(Item)^.TravRecord.StnName);

 A2 := StrPas(PRedTravObj(Item)^.TravRecord.FwdStn);

 SearchKey := A1 + A2 +A3; F := FirstThat(@ItExists);

 if (F <> nil) then

 begin

 AtFree(IndexOf(F));

 Reject := False;

 end;

 Found := False;

 end;

Fig 9

Found performs a search for duplicates in the

database, during the filtering process. Every set up in
traverse survey is uniquely identified by the

reference, instrument and forward stations.

Consequently, the search key is a concatenation of

the three key fields. With this variable, an iteration

takes place in the database searching for any

previous entry and if found, is deleted to make way

for update in observations.

C. SearchForPosition

functionTTravFieldBook.SearchForPosition(Item: Pointer):

Integer;

var I : integer ; CurrInStn,CurrROStn,CurrFwdStn:string;

X,V,Y:PRedTravObj;

ANode: Boolean;

 functionMatchFwdReadings: PRedTravObj): Boolean; far;

 varFwd,InStn: string;

 begin

 Fwd :=StrPas(Readings^.TravRecord.FwdStn);

 InStn :=StrPas(Readings^.TravRecord.StnName);

Match_Up := ((Fwd = CurrInStn)and(InStn =

CurrROStn));

 end;

functionMatchRev(Readings: PRedTravObj): Boolean; far;

 varFwd,InStn,ROStn: string;

 begin

 ROStn :=StrPas(Readings^.TravRecord.RefStn);

 InStn :=StrPas(Readings^.TravRecord.StnName);

Match_Down := ((ROStn = CurrInStn)and(InStn =

CurrFwdStn));

 end;

begin

CurrInStn :=StrPas(PRedTravObj(Item)^.TravRecord.Stn

Name);

CurrROStn :=StrPas(PRedTravObj(Item)^.TravRecord.R

efStn);

CurrFwdStn :=StrPas(PRedTravObj(Item)^.TravRecord.F

wdStn);

V :=LastThat(@MatchFwd); X := FirstThat(@MatchRev);

 if (V <> nil) then

 begin

 SearchForPosition :=IndexOf(V)+1;

 PRedTravObj(Item)^.TravRecord.Link := True;

 PRedTravObj(At((IndexOf(V))))^.

 TravRecord.Link := True;

 end

 else if (X <> nil) then

 begin

 SearchForPosition :=IndexOf(X);

 PRedTravObj(Item)^.TravRecord.Link := True;

 If (IndexOf(X)) < (count-1) then

 PRedTravObj(At((IndexOf(X)+1)))^.

 TravRecord.Link := True;

 end else

 begin

 SearchForPosition := Count ;

 PRedTravObj(Item)^.TravRecord.Link := False;

 end;

end;

Fig. 10

The routine SearchForPosition implements the

Forward and Reverse Search algorithms. It does so
by examining the conditionality in the relationships

between the key fields in any pair of data sets.

The function MatchFwd is a forward search the

result of which identifies a location next to the

current position, to insert or append an observation.

Similarly, the MatchRev searches in reverse and if

successful, identifies the current object position as

location for insertion. By this action, all other

objects will move a position down the line.

D. Insert

procedureTTravFieldBook.Insert(Item: Pointer);

begin

 Filter(PRedTravObj(Item));

 If not Reject then

 AtInsert(SearchForPosition(PRedTravObj(Item)),

 PRedTravObj(Item));

end;

Fig. 11

The routine, SearchForPosition, returns an integer,

Index, to the calling program. Hence an insertion is
performed by the last call in the Insert method, in the

form of AtInsert(Index, NewObject), Fig. 11.

IV. APPLICATION

Fig. 12

In Fig. 12 is a representation of a typical field

situation where survey groups on a large scale work
download the day’s work to management software.

International Journal of Engineering Trends and Technology (IJETT) – Volume 56 Number 1- February 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 24

A typical example in this instance is SMS [12].

Thus as illustrated in Fig. 7, the field book in Fig. 13

is a container that holds observations that may be

entered or downloaded in any order.

Fig. 13Traverse Field Book

The input process continues until the survey is

complete. A contiguous and sorted data set is then

generated, Fig. 14, for computation of positions by

Least Squares [13] or Bowditch adjustment.

Fig. 14Traverse Data List

V. CONCLUSIONS

The model sort described in this paper has proved

invaluable in resolving the complexities that arise in

dynamic survey data collection. It provides the basis

for processing level data sets, especially with the

advent of digital levels where data size can be in

order of a thousand points. Similarly, it has been
adapted for successful application in traverse data

collection.

The progression has been from concurrent double

key data structures to triple key models.

Conclusively then, it is a generic prototype for

parallel processing of n-key data structures.

On reflection, the novel solution is due to

evolution in programming techniques as

conventional approach gives way to object
methodology. With this, hitherto difficult situations

tend to have model solutions. In this vein, the

benefits of customization and in house developments

are duly recommended.

REFERENCES

[1] W. Schofield, M. Breach, “Engineering Surveying”,6th

Edition, Butterworth-Heinemann, © 2007.

[2] Yuji Murayama Surantha Dassanayake, “Fundamentals of

Surveying”, University of Tsukuba, Japan.

[3] Department of Civil Engineering, “Surveying - Traverse

Calculations”, The University of Memphis,

www.ce.memphis.edu/1112/notes/project_3/traverse/

[4] Glynn Winskel, “Set Theory for Computer Science”,

University of Cambridge, © 2010 Glynn Winskel

[5] Jos´eMeseguer, “Set Theory and Algebra in Computer

Science”, University of Illinois, Urbana,©Jos´eMeseguer,

2008–2012.

[6] Jean-Paul Tremblay, Paul G. Sorenson, “An Introduction to

Data Structures With Applications”, McGraw Hill

Computer Science Series 2
nd

 Edition.

[7] Matthew Huntbach, “Notes on Semantic Nets and Frames”,

Dept of Computer Science, Queen Mary and Westfield

College, London.

[8] C. P. E. Agbachi, “Optimisation of Least Squares

Algorithm: A Study of Frame Based Programming

Techniques in Horizontal Networks”, IJMTT, Volume 37

Number 3 - September 2016.

[9] J.E. Akin, “Object Oriented Programming Concepts”,

©2001 J.E Akin, https://www.clear.rice.edu/../oop3.pdf

[10] Marco Cantu, “Object Pascal Handbook”, © Marco Cantu

1995-2016. http://www.marcocantu.com/objectpascal

[11] C. P. E. Agbachi, “Design and Application of Concurrent

Double Key Survey Data Structures”, IJCTT, Volume 36

Number 3 - June 2016.

[12] C. P. E. Agbachi, “Surveying Software”, Chartered

Institution of Civil Engineering Surveyors ICES, October

2011,http://mag.digitalpc.co.uk/fvx/ces/1110/?pn=44

[13] R. E. Deakin, “Notes on Least Squares 7”, Geospatial

Science, RMIT University, 2005.

