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Abstract — Android device users are frequently threatened by an increasing number of malicious applications, 

generally called malware. Malware constitutes a serious threat to user privacy, money, devices and file 

integrity. We can classify malware into small number of behaviours and classes, each of which performs a 

limited set of misbehavior that characterize them. This misbehavior can be defined by monitoring features 

belonging different android levels. In this project, we present Enhanced Multilevel Anomaly Detection for 

Android Malware (EMADAM), a novel host based malware detection system for android devices which 

simultaneously analyses and correlates features at four levels: kernel, application, user and package, detect and 

stop malicious behaviors. 

 

Index terms — Malware detection, Multilevel anomaly, Malicious actions, Android behavioural patterns 

I. INTRODUCTION 

Smartphones and tablets have become extremely 

popular in the last years. At the end of 2014, the 

number of active mobile devices worldwide was 

almost 7 billions, and in developed nations the ratio 

between mobile devices and people is estimated as 

120.8% [1]. Given their large distribution, and also 

their capabilities, in the last two years mobile 

devices have became the main target for attackers 

[2]. Android, the open source operative system 

(OS) introduced by Google, has currently the 

largest market share [1], which is greater than 80%. 

Due to the openness and popularity, Android is the 

main target of attacks against mobile devices 

(98.5%), with more than 1 million of malicious 

apps currently available in the wild [3]. Malicious 

apps (generically called malware) constitute the 

main vector for security attacks against Mobile 

Devices. The malwares in user device threatens the 

user privacy, the device integrity, or even user’s 

credit. Some common examples of attacks 

performed by Android malicious apps are stealing 

contacts, login credentials, text messages, or 

maliciously subscribing the user to costly premium 

services. Furthermore, all these misbehaviors can 

be performed on Android devices without the user 

noticing them. 

 It has been recently reported that almost 60% of 

existing malware send stealthy premium rate SMS 

messages. However, also Google Play, the official 

market for Android apps, has hosted apps which 

have been found to be malicious. Along with the 

vast increase of Android malware, several security 

solutions have been proposed by the research 

community, spanning from static or dynamic 

analysis of apps [4], to applying security policies 

enforcing data security [5] [6], to run-time 

enforcement [7] [8]. However, these solutions still 

present significant drawbacks. In particular, they 

are attack-specific, i.e. they usually focus on and 

tackle a single kind of security attack, e.g. privacy 

leaking [7] [8], or privilege escalation (jail-

breaking) [5] [9]. Moreover, these frameworks 

generally require a custom OS [8].  

In particular, to detect app misbehaviors, 

EMADAM monitors the device actions, its 

interaction with the user and the running apps, by 

retrieving five groups of features at four different 

levels of abstraction, namely the kernel level, 

application-level, user-level and package-level. For 

some groups of features EMADAM applies an 

anomaly based approach, for other groups it 

implements a signature based approach that 

considers behavioral patterns that we have derived 

from known malware misbehaviors. In fact, 

EMADAM has been designed to detect malicious 

behavioral patterns extracted from several 

categories of malware. This multi-level behavioral 

analysis allows EMADAM to detect misbehaviors 

typical of almost all malware which can be found 

in the wild. EMADAM also has shown efficient 

detection capabilities as it introduces an 1.4% 

performance overhead and a 4% battery depletion.  
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Finally, EMADAM is usable because it both 

requires little-to-none user interaction and does not 

impact the user experience due to its efficiency. 

EMADAM achieves the above goals as follows: (i) 

it monitors five groups of Android features, among 

which system calls (type and amount) globally 

issued on the device, the security relevant API 

calls, and the user activity, to detect unusual user 

and device behavioral patterns; to this end, it 

exploits two cooperating proximity-based 

classifiers to detect and alert anomalies; (ii) it 

intercepts and blocks dangerous actions by 

detecting specific behavioral patterns which take 

into account a set of known security hazard for the 

user and the device; (iii) every time a new app is 

installed, EMADAM assesses its security risk by 

analyzing the requested permissions and reputation 

metadata, such as user scores and download 

number, and it inserts the app in a suspicious list if 

evaluated as risky. 

II. LITERATURE SURVEY 

Researchers in [13] find that Cloaker, a stealthy 

rootkit, exploits features of the ARM processor in 

order to hide itself. There are two specific ARM 

hardware features utilized by Cloaker, the ability to 

change the location of the interrupt vector and the 

ability to lock addresses in the translation look 

aside buffer. This second technique allows memory 

to be stealthily mapped into processes without 

modifying the OS level (detectable) page table 

entries. 

This work presents AppGuard[8], a powerful and 

flexible security system that overcomes these 

deficiencies. It enforces user-defined security 

policies on untrusted Android applications without 

requiring any changes to a Smartphone’s firmware, 

root access, or the like. Fine-grained and state full 

security policies are expressed in a formal 

specification language, which also supports secrecy 

requirements. 

Our system offers complete mediation of security-

relevant methods based on calleesite inline 

reference monitoring and supports widespread 

deployment. In the experimental analysis we 

demonstrate the removal of permissions for overly 

curious apps as well as how to defend against 

several recent real-world attacks on Android 

phones. Our technique exhibits very little space and 

runtime overhead. The utility of AppGuard has 

already been demonstrated by more than 1,000,000 

downloads. 

TaintDroid incurs only 14% performance overhead 

on a CPU-bound micro-benchmark and imposes 

negligible overhead on interactive third-party 

applications. Using TaintDroid to monitor the 

behavior of 30 popular third-party Android 

applications, we found 68 instances of potential 

misuse of users’ private information across 20 

applications. Monitoring sensitive data with 

TaintDroid provides informed use of third-party 

applications for phone users and valuable input for 

Smartphone security service firms seeking to 

identify misbehaving applications. 

In this paper CopperDroid[1], an approach built on 

top of QEMU to automatically perform out-of-the-

box dynamic behavioural analysis of Android 

malware. To this end, CopperDroid presents a 

unified analysis to characterize low-level OS-

specific and high-level Android-specific behaviors. 

Based on the observation that such behaviors are 

however achieved through the invocation of system 

calls, CopperDroid’s VM-based dynamic system 

call-centric analysis is able to faithfully describe 

the behavior of Android malware whether it is 

initiated from Java, JNI or native code execution. 

We carried out extensive experiments to assess the 

effectiveness of our analyses on a large Android 

malware data set of more than 1,200 samples 

belonging to 49 Android malware families 

(provided by the Android Malware Genome 

Project) and about 400 samples over 13 families 

(collected from the Contagio project). Our 

experiments show that a proper malware 

stimulation strategy (e.g., sending SMS, placing 

calls) successfully discloses additional behaviors 

on a non-negligible portion of the analyzed 

malware samples. 

Android’s security framework has been an 

appealing subject of research in the last few years. 

Android has been shown to be vulnerable to 

application-level privilege escalation attacks, such 

as confused deputy attacks, and more recently, 

attacks by colluding applications. While most of 

the proposed approaches aim at solving confused 

deputy attacks, there is still no solution that 

simultaneously addresses collusion attacks.  

Android’s permission system is intended to inform 

users about the risks of installing applications. 

When a user installs an application, he or she has 

the opportunity to review the application’s 

permission requests and cancel the installation if 

the permissions are excessive or objectionable. We 

examine whether the Android permission system is 

effective at warning users. In particular, we 

evaluate whether Android users pay attention to, 

understand, and act on permission information 

during installation. We performed two usability 

studies: an Internet survey of 308 Android users, 

and a laboratory study wherein we interviewed and 

observed 25 Android users. Study participants   

displayed low attention and comprehension rates: 

both the Internet survey and laboratory study found 

that 17% of participants paid attention to 
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permissions during installation, and only 3% of 

Internet survey respondents could correctly answer 

all three permission comprehension questions.  

This indicates that current Android permission 

warnings do not help most users make correct 

security decisions. However, a notable minority of 

users demonstrated both awareness of permission 

warnings and reasonable rates of comprehension. 

We present recommendations [11] for improving 

user attention and comprehension, as well as 

identify open challenges. 

III. PROBLEM DEFINITION 

This study involves the malware detection process 

for the Android platform. There are known and 

unknown malware and benign apps in the market. 

Known malware is removed from the market place. 

Unknown malware evades the detection engine by 

hiding its malicious activities. We identify these 

unknown malwares and the benign apps based on 

binary classification. If there are a finite set of 

classes, then the classifier will determine the class 

of a given object. Binary classification involves 

only two sets of possible classes. Most of the 

discussed systems are attack specific, usually focus 

on and tackle a single kind of security attack (e.g,) 

Privacy leaking or privilege escalation. Most of the 

existing works detects malware either in static 

mode or dynamic mode but not both. Moreover, 

these frameworks generally require a custom OS. 

Apart from this ad-hoc security solutions, this work 

acts as an attempt to limit set of dangerous 

operations that external applications can perform. 

IV. PROPOSED SYSTEM 

In proposed system, we present a novel multi-level 

and behavior based, malware detector for Android 

devices called EMADAM. In particular, to detect 

app misbehaviors, EMADAM monitors the device 

actions, its interaction with the user and the running 

apps, by retrieving five groups of features at four 

different levels of abstraction, namely the kernel 

level, application-level, user-level and package-

level. For some groups of features EMADAM 

applies an anomaly based approach, for other 

groups it implements a signature based approach 

that considers behavioral patterns that we have 

derived from known malware misbehaviors. In fact, 

EMADAM has been designed to detect malicious 

behavioral patterns extracted from several 

categories of malware. This multi-level behavioral 

analysis allows EMADAM to detect misbehaviors 

typical of almost all malware which can be found 

in the wild. Finally, EMADAM is usable because it 

both requires little-to-none user interaction and 

does not impact the user experience due to its 

efficiency. Fig. 1 explains the static detection of 

malicious contents using the apk file of the 

application. 

 

Fig. 1 Feature extraction from apk file 

The main novelty of EMADAM is its cross-layer 

approach and a novel integration of techniques 

(some of which already existing) that provides high 

efficacy with low overhead. EMADAM has been 

conceived to prove that a multilevel approach 

makes it possible to dynamically detect most of 

current Android malware, right on the device with 

limited overhead. To verify that such approach is 

indeed viable, a large extensive set of tests have 

been performed to prove empirically its efficacy. 

V. ARCHITECTURE OF EMADAM 

 

Figure2. Architectural diagram of EMADAM 
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Table 1: Levels of analysis and features at 

different levels 

VII. MODULES 

EMADAM can be logically decomposed into four 

main architectural blocks: App Risk Assessment, 

Global Monitor, Per App Monitor, User Interface 

& Prevention and Deployment. The first one is the 

App Risk Assessment, which includes the App 

Evaluator that implements an analysis of metadata 

of an app package (apk) (permission and market 

data), before the app is installed on the device. This 

evaluation computes the app’s risk score, i.e. the 

likelihood that the app is a malware. Based on this 

risk evaluation, this component populates a set of 

suspicious apps (App Suspicious List), which will 

be monitored at run-time. The second block is the 

Global Monitor, which monitors the device and OS 

features at three levels, i.e. kernel (SysCall 

Monitor), user (User Activity Monitor) and 

application (Message Monitor). These features are 

monitored regardless of the specific app or system 

components generating them, and are used to shape 

the current behavior of the device itself. Then, 

these behaviors are classified as genuine (normal) 

or malicious (anomalous) by the Classifier 

component. The third block is the Per-App 

Monitor, which implements a set of known 

behavioral patterns to monitor the actions 

performed by the set of suspicious apps (App 

Suspicious List), generated by the App Risk 

Assessment, through the Signature-Based Detector. 

Finally, the User Interface & Prevention 

component includes the Prevention module, which 

stops malicious actions and, in case a malware is 

found, handles the procedure for removing 

malicious apps using the User Interface (UI). The 

UI handles notifications to device user, in 

particular:  

(i) The evaluation of the risk score of 

newly-downloaded apps by the App 

Evaluation. 

(ii) The reporting of malicious app 

(Notify) and 

(iii) To ask the user whether to remove 

them (Remove Malicious App). 

 

A. APP RISK ASSESSMENT 

When a new app is installed on the device (deploy-

time), the App Evaluator component intercepts and 

hijacks the installation event. This component 

analyzes the metadata of the new app to assess its 

risk, by retrieving features from the app package, 

related to critical operations, and from the market, 

related to app reputation. In detail, these features 

are: (i) the permissions declared in the manifest, (ii) 

the market of provenance, (iii) the total number of 

downloads, (iv)the developer reputation and (v) the 
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user rating. The five parameters are analyzed 

through a hierarchical algorithm which returns a 

decision on the riskiness of the app classifying it as 

safe or risky. Based on this decision, the user can 

choose whether to continue the installation (or not) 

of the new app. If the user chooses to install a risky 

app, its package name is recorded in the 

EMADAM App Suspicious List and is 

continuously monitored looking for the known 

behavioral patterns. Note that EMADAM extracts 

all these pieces of information in a process which is 

totally transparent to the user.  

The user can, however, decide whether she prefers 

to receive a notification of the decision of the App 

Evaluator, or to keep the process invisible. In the 

following, we assume that the user chooses the 

transparent approach (i.e., new apps are always 

installed, but inserted into the App Suspicious List 

if risky), as to allow EMADAM to enforce security 

policies on the device. It is worth noting that the 

App Evaluator is not a detector of malicious apps. 

Instead, the App Evaluator aims at finding apps 

which are risky, which should be monitored at run-

time by EMADAM, improving the overall 

performance. 

B. GLOBAL MONITOR 

The Global Monitor is at the core of the EMADAM 

framework, since it is responsible of collecting the 

run-time device behaviors and classifying them as 

“genuine” or “malicious”. In EMADAM, a 

behavior is represented through a vector of 

features. For each of them, EMADAM records how 

many times a specific feature has been used in a 

period of time Tk. The features are extracted from 

different kinds of dynamic events : User Activity, 

Critical API (in particular, SMS, i.e. text messages) 

and System Call (Sys Calls). The Actions Logger is 

the component that records all these features into a 

vector, which is then fed to the Classifier. This 

component is trained to recognize genuine 

behaviors related to normal device usage, and 

malicious behavioral patterns deviating from the 

genuine ones, derived from the seven classes of 

malware. The classifier correlates features from the 

three monitored levels, and detects misbehaviors 

which could pass unnoticed if monitored separately 

on the single levels. The Global Monitor is 

effective in detecting malicious behaviors, 

especially for SMS Trojan, Rootkit, Installers and 

Ransomware. 

1) User Activity and Message Monitor: The User 

Activity and Message Monitor allow EMADAM to 

intercept calls to security relevant API functions, 

namely related to SMS messages and user activity. 

As we have previously recalled, these features are 

critical from a security point of view to detect SMS 

sent to premium-numbers and/or without the user 

knowledge. EMADAM hijacks security relevant 

methods, by monitoring their actual parameters and 

controlling the final outcome of the action. In 

particular, EMADAM hijacks the 

SendTextMessage() and SendDataMessage() 

methods to control the events of outgoing SMS 

messages . Furthermore, using standard Android 

APIs, EMADAM also verifies 

 (i) if the user is interacting with the device,  

(ii) if the device screen is on/off and 

(iii) if a phone call is ongoing.  

These elements are used to assess when the user is 

active. In particular, we can categorize the status of 

the user as being in one of two possible states 

(active or idle), which are strongly dependent on 

the activity of the phone itself. In the first user 

activity state (active) either (i) is on, or (ii) the 

screen is off but a phone call is ongoing. In fact, 

when the user is active, the phone has to show 

interactive contents on the screen and receives 

inputs from the user, or handles the elements 

involved in a phone call. Otherwise, in the second 

user activity state (idle), the phone is not active. 

2) Action Logger and Classifier: Among all the 

features that EMADAM collects, the Action 

Logger retrieves 14 features from three classes at 

three distinct levels (kernel, application, user). In 

detail, the first eleven features concern the system 

calls related to file modification and inter-

component communication (i.e., open, ioctl, brk, 

read, write, exit, close, sendto, sendmsg, recvfrom, 

and recvmsg). 

C. PER-APP MONITOR 

The Per-App Monitor component is 

complementary to the Global Monitor since it is 

aimed at detecting additional, signature-based, 

known misbehaviors. The Per-App monitor is 

based on a set of known malicious behavioral 

patterns which considers the Suspicious App List 

created by the App Risk Assessment module, the 

alerts raised by the classifiers and a set of features 

at application-level not considered by the classifier. 

The Per-App monitor exploits behavioral patterns 

which represent suspicious behaviors that have 

been inferred by analyzing the behavioral classes of 

malware at API level and kernel level.  

To consider these behavioral patterns, Per-App 

Monitor constantly monitors three features, 

namely: 

(i) The list of apps with administrator 

privileges, which are those apps that can 

access a specific set of dangerous security 
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relevant API and that cannot be removed 

unless the privileges are revoked, 

(ii) The SMS default app, which is the app 

that by default handles the operations 

related to text messages and that can be 

changed by the user,  

(iii) The app in foreground, which is the app 

currently interacting with the user. 

 

D. USER INTERFACE & PREVENTION 

The User Interface & Prevention includes the 

Prevention module that acts as a security 

enforcement mechanism by blocking the detected 

misbehaviors related to behavioral patterns, e.g. a 

SMS being sent without the user authorization. In 

such a case, the User Interface (UI) module handles 

the process for removing the responsible app.  

The UI conveys to the user all the events which 

require an active interaction, such as for removing 

malicious apps, and is also used by the user to 

select which behaviors should be blocked or 

allowed. Finally, the UI is exploited by the App 

Evaluator to communicate to the user the risk score 

of a new app at deploy-time. In this case, the user 

can then decide whether to continue the installation 

(or not) of the app. 

E. DEPLOYMENT 

EMADAM comes as a package which contains the 

EMADAM apk7, implementing the User Interface 

and Prevention Modules, the App Evaluator, the 

Per-App Monitor, and Global Monitor. The 

EMADAM package also contains the Superuser8 

apk, for handling attempts of accessing root 

privileges, and the X-posed Installer apk, for 

hooking and handling events relevant to the Per-

App Monitor. When installed, EMADAM deploys 

a kernel monitoring module, by issuing the insmod 

command. This command, and the X-posed 

Installer, requires root access. 

VIII. RELATED WORKS 

Taintdroid[5] is a security framework for android 

devices which tracks information flow to avoid 

malicious stealing of sensitive information. 

Differently from EMADAM TaintDroid targets a 

very specific class of attacks. Moreover, 

TaintDroid requires a custom ROM of the Android 

system, to implement the information flow 

mechanisms. A behavioral analysis of Android 

apps at the system call level is presented in [35]. 

The authors propose a framework called 

CopperDroid that discerns good behaviors from 

bad ones, by automatically stimulating malicious 

apps to misbehave through instrumentation. The 

analysis of behaviors is automatic, which means 

that the behavior of the stimulated app by user 

interaction is not considered as in EMADAM. 

Android Security Framework (ASF) [34] is a 

generic and extensible security framework for 

Android that provides security API to facilitate the 

inclusion of security extensions in Android. This 

approach is orthogonal to EMADAM: the goal of 

EMADAM is to detect malware, i.e. anomalies, 

while ASF is more oriented to the enforcement of 

policies. The authors of [31] presents a system 

which aim at detecting root kit hidden in 

Trojanized apps. This framework, Droid Analyzer, 

identifies the features which are typical of root kits 

and then looks for them statically in the code of 

apps, performing the analysis on an external server. 

On the contrary, EMADAM performs the analysis 

on the mobile device, and is focused on several 

classes of malware. MOSES [36] is a policy-based 

framework that enforces software isolation of apps 

(and data) on Android. EMADAM is more focused 

on malware detection, even if it allows users to 

define some high-level policies for apps. 

Alterdroid [33] is a tool that compares the 

differences in behavior between an original app and 

automatically generated version that contain 

modifications (faults) to detect hidden malware, 

such as in pictures. Differently from EMADAM, 

Alterdroid performs static analysis and does not 

target general malware, being not able to detect 

pieces of malware that do not hide malicious code 

in static resources. [37] proposes a method for 

malware detection based on embeddings of 

function call graphs in a vector space capturing 

structural relationship. This representation is used 

to detect Android malware using machine learning 

techniques by achieving a good accuracy. 

Similarly, [32] classifies Android malware via 

dependency graphs by extracting a weighted 

contextual API dependency graph as program 

semantics to construct feature sets. These 

approaches implement a static detection of Android 

malware while EMADAM implements both static 

and runtime analysis. [38] statically analyzes app to 

derive a set of features for malware detection at 

application-level and evaluates several classifiers 

for Android apps. EMADAM also analyzes system 

calls and user activities and classifies the activities 

at run-time. Similarly, DREBIN [39] performs 

static analysis of Android apps to gather features 

that are embedded in a joint vector space, such that 

typical patterns indicative for malware can be 

automatically identified and used for explaining the 

decision. [40] presents a method for screening 

malicious Android apps that uses the requested 

permissions and a metric that measures the 

riskiness of an app based on a data-flow graph. 

These data are used with a set of machine learning 

algorithms to classify new apps as malicious or 

benign with an accuracy of 96% with less than 1% 

false positives. An approach similar to the App 

Classifier of EMADAM is presented in [41], which 
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proposes to communicate an index assessing the 

risk level of an Android application. However, the 

proposed index is mainly intended for a 

comparison between similar apps, pushing the user 

to choose the less risky. 

 

IX. CONCLUSION 

Starting from the end of 2011, attackers have 

increased their efforts toward Android 

Smartphones and tablets, producing and 

distributing hundreds of thousands of malicious 

apps. These apps threaten the user data privacy, 

money and device integrity, and are difficult to 

detect since they apparently behave as genuine 

apps bringing no harm. This project proposes 

EMADAM, a multi-level host-based malware 

detector for Android devices. By analyzing and 

correlating several features at four different 

Android levels, EMADAM is able to detect 

misbehaviors from malware behavioral classes that 

consider 125 existing malware families, which 

encompass most of the known malware. To the best 

of our knowledge, EMADAM is the first system 

which aims at detecting and stopping at run-time 

any kind of malware, without focusing on a 

specific security threat, using a behavior-based and 

multi-level approach. 
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