
International Journal of Engineering Trends and Technology (IJETT) – Volume 58 Issue 3- April 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 150

Enhanced Multilevel Anomaly Detection for

Android Malware
Dr. Santhi Baskaran1, G.Maheshwari2, J. Pearly percy3, P.Priyadharshini4

1Professor, Department of Information Technology, Pondicherry Engineering College, Pillaichavady,

Puducherry, India
2Student, Department of Information Technology, Pondicherry Engineering College, Pillaichavady,

Puducherry, India
3Student, Department of Information Technology, Pondicherry Engineering College, Pillaichavady,

Puducherry, India
4Student, Department of Information Technology, Pondicherry Engineering College, Pillaichavady,

Puducherry, India

Abstract — Android device users are frequently threatened by an increasing number of malicious applications,

generally called malware. Malware constitutes a serious threat to user privacy, money, devices and file

integrity. We can classify malware into small number of behaviours and classes, each of which performs a

limited set of misbehavior that characterize them. This misbehavior can be defined by monitoring features

belonging different android levels. In this project, we present Enhanced Multilevel Anomaly Detection for

Android Malware (EMADAM), a novel host based malware detection system for android devices which

simultaneously analyses and correlates features at four levels: kernel, application, user and package, detect and

stop malicious behaviors.

Index terms — Malware detection, Multilevel anomaly, Malicious actions, Android behavioural patterns

I. INTRODUCTION

Smartphones and tablets have become extremely

popular in the last years. At the end of 2014, the

number of active mobile devices worldwide was

almost 7 billions, and in developed nations the ratio

between mobile devices and people is estimated as

120.8% [1]. Given their large distribution, and also

their capabilities, in the last two years mobile

devices have became the main target for attackers

[2]. Android, the open source operative system

(OS) introduced by Google, has currently the

largest market share [1], which is greater than 80%.

Due to the openness and popularity, Android is the

main target of attacks against mobile devices

(98.5%), with more than 1 million of malicious

apps currently available in the wild [3]. Malicious

apps (generically called malware) constitute the

main vector for security attacks against Mobile

Devices. The malwares in user device threatens the

user privacy, the device integrity, or even user’s

credit. Some common examples of attacks

performed by Android malicious apps are stealing

contacts, login credentials, text messages, or

maliciously subscribing the user to costly premium

services. Furthermore, all these misbehaviors can

be performed on Android devices without the user

noticing them.

 It has been recently reported that almost 60% of

existing malware send stealthy premium rate SMS

messages. However, also Google Play, the official

market for Android apps, has hosted apps which

have been found to be malicious. Along with the

vast increase of Android malware, several security

solutions have been proposed by the research

community, spanning from static or dynamic

analysis of apps [4], to applying security policies

enforcing data security [5] [6], to run-time

enforcement [7] [8]. However, these solutions still

present significant drawbacks. In particular, they

are attack-specific, i.e. they usually focus on and

tackle a single kind of security attack, e.g. privacy

leaking [7] [8], or privilege escalation (jail-

breaking) [5] [9]. Moreover, these frameworks

generally require a custom OS [8].

In particular, to detect app misbehaviors,

EMADAM monitors the device actions, its

interaction with the user and the running apps, by

retrieving five groups of features at four different

levels of abstraction, namely the kernel level,

application-level, user-level and package-level. For

some groups of features EMADAM applies an

anomaly based approach, for other groups it

implements a signature based approach that

considers behavioral patterns that we have derived

from known malware misbehaviors. In fact,

EMADAM has been designed to detect malicious

behavioral patterns extracted from several

categories of malware. This multi-level behavioral

analysis allows EMADAM to detect misbehaviors

typical of almost all malware which can be found

in the wild. EMADAM also has shown efficient

detection capabilities as it introduces an 1.4%

performance overhead and a 4% battery depletion.

International Journal of Engineering Trends and Technology (IJETT) – Volume 58 Issue 3- April 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 151

Finally, EMADAM is usable because it both

requires little-to-none user interaction and does not

impact the user experience due to its efficiency.

EMADAM achieves the above goals as follows: (i)

it monitors five groups of Android features, among

which system calls (type and amount) globally

issued on the device, the security relevant API

calls, and the user activity, to detect unusual user

and device behavioral patterns; to this end, it

exploits two cooperating proximity-based

classifiers to detect and alert anomalies; (ii) it

intercepts and blocks dangerous actions by

detecting specific behavioral patterns which take

into account a set of known security hazard for the

user and the device; (iii) every time a new app is

installed, EMADAM assesses its security risk by

analyzing the requested permissions and reputation

metadata, such as user scores and download

number, and it inserts the app in a suspicious list if

evaluated as risky.

II. LITERATURE SURVEY

Researchers in [13] find that Cloaker, a stealthy

rootkit, exploits features of the ARM processor in

order to hide itself. There are two specific ARM

hardware features utilized by Cloaker, the ability to

change the location of the interrupt vector and the

ability to lock addresses in the translation look

aside buffer. This second technique allows memory

to be stealthily mapped into processes without

modifying the OS level (detectable) page table

entries.

This work presents AppGuard[8], a powerful and

flexible security system that overcomes these

deficiencies. It enforces user-defined security

policies on untrusted Android applications without

requiring any changes to a Smartphone’s firmware,

root access, or the like. Fine-grained and state full

security policies are expressed in a formal

specification language, which also supports secrecy

requirements.

Our system offers complete mediation of security-

relevant methods based on calleesite inline

reference monitoring and supports widespread

deployment. In the experimental analysis we

demonstrate the removal of permissions for overly

curious apps as well as how to defend against

several recent real-world attacks on Android

phones. Our technique exhibits very little space and

runtime overhead. The utility of AppGuard has

already been demonstrated by more than 1,000,000

downloads.

TaintDroid incurs only 14% performance overhead

on a CPU-bound micro-benchmark and imposes

negligible overhead on interactive third-party

applications. Using TaintDroid to monitor the

behavior of 30 popular third-party Android

applications, we found 68 instances of potential

misuse of users’ private information across 20

applications. Monitoring sensitive data with

TaintDroid provides informed use of third-party

applications for phone users and valuable input for

Smartphone security service firms seeking to

identify misbehaving applications.

In this paper CopperDroid[1], an approach built on

top of QEMU to automatically perform out-of-the-

box dynamic behavioural analysis of Android

malware. To this end, CopperDroid presents a

unified analysis to characterize low-level OS-

specific and high-level Android-specific behaviors.

Based on the observation that such behaviors are

however achieved through the invocation of system

calls, CopperDroid’s VM-based dynamic system

call-centric analysis is able to faithfully describe

the behavior of Android malware whether it is

initiated from Java, JNI or native code execution.

We carried out extensive experiments to assess the

effectiveness of our analyses on a large Android

malware data set of more than 1,200 samples

belonging to 49 Android malware families

(provided by the Android Malware Genome

Project) and about 400 samples over 13 families

(collected from the Contagio project). Our

experiments show that a proper malware

stimulation strategy (e.g., sending SMS, placing

calls) successfully discloses additional behaviors

on a non-negligible portion of the analyzed

malware samples.

Android’s security framework has been an

appealing subject of research in the last few years.

Android has been shown to be vulnerable to

application-level privilege escalation attacks, such

as confused deputy attacks, and more recently,

attacks by colluding applications. While most of

the proposed approaches aim at solving confused

deputy attacks, there is still no solution that

simultaneously addresses collusion attacks.

Android’s permission system is intended to inform

users about the risks of installing applications.

When a user installs an application, he or she has

the opportunity to review the application’s

permission requests and cancel the installation if

the permissions are excessive or objectionable. We

examine whether the Android permission system is

effective at warning users. In particular, we

evaluate whether Android users pay attention to,

understand, and act on permission information

during installation. We performed two usability

studies: an Internet survey of 308 Android users,

and a laboratory study wherein we interviewed and

observed 25 Android users. Study participants

displayed low attention and comprehension rates:

both the Internet survey and laboratory study found

that 17% of participants paid attention to

International Journal of Engineering Trends and Technology (IJETT) – Volume 58 Issue 3- April 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 152

permissions during installation, and only 3% of

Internet survey respondents could correctly answer

all three permission comprehension questions.

This indicates that current Android permission

warnings do not help most users make correct

security decisions. However, a notable minority of

users demonstrated both awareness of permission

warnings and reasonable rates of comprehension.

We present recommendations [11] for improving

user attention and comprehension, as well as

identify open challenges.

III. PROBLEM DEFINITION

This study involves the malware detection process

for the Android platform. There are known and

unknown malware and benign apps in the market.

Known malware is removed from the market place.

Unknown malware evades the detection engine by

hiding its malicious activities. We identify these

unknown malwares and the benign apps based on

binary classification. If there are a finite set of

classes, then the classifier will determine the class

of a given object. Binary classification involves

only two sets of possible classes. Most of the

discussed systems are attack specific, usually focus

on and tackle a single kind of security attack (e.g,)

Privacy leaking or privilege escalation. Most of the

existing works detects malware either in static

mode or dynamic mode but not both. Moreover,

these frameworks generally require a custom OS.

Apart from this ad-hoc security solutions, this work

acts as an attempt to limit set of dangerous

operations that external applications can perform.

IV. PROPOSED SYSTEM

In proposed system, we present a novel multi-level

and behavior based, malware detector for Android

devices called EMADAM. In particular, to detect

app misbehaviors, EMADAM monitors the device

actions, its interaction with the user and the running

apps, by retrieving five groups of features at four

different levels of abstraction, namely the kernel

level, application-level, user-level and package-

level. For some groups of features EMADAM

applies an anomaly based approach, for other

groups it implements a signature based approach

that considers behavioral patterns that we have

derived from known malware misbehaviors. In fact,

EMADAM has been designed to detect malicious

behavioral patterns extracted from several

categories of malware. This multi-level behavioral

analysis allows EMADAM to detect misbehaviors

typical of almost all malware which can be found

in the wild. Finally, EMADAM is usable because it

both requires little-to-none user interaction and

does not impact the user experience due to its

efficiency. Fig. 1 explains the static detection of

malicious contents using the apk file of the

application.

Fig. 1 Feature extraction from apk file

The main novelty of EMADAM is its cross-layer

approach and a novel integration of techniques

(some of which already existing) that provides high

efficacy with low overhead. EMADAM has been

conceived to prove that a multilevel approach

makes it possible to dynamically detect most of

current Android malware, right on the device with

limited overhead. To verify that such approach is

indeed viable, a large extensive set of tests have

been performed to prove empirically its efficacy.

V. ARCHITECTURE OF EMADAM

Figure2. Architectural diagram of EMADAM

VI. LEVELS OF ANALYSIS AND

FEATURES

Level Group Feature
Descrip

tion

Targeted

Misbehavior

K
e
rn

el

Sys

Calls

open,

read, . . .

System

calls

concerni

ng file

and

inter-

compon

ent

commun

ication

Sudden and

unmotivated

activity

increase

International Journal of Engineering Trends and Technology (IJETT) – Volume 58 Issue 3- April 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 153

A
p

p
li

c
a
ti

o
n

 SMS Number

of SMS

(SMS

Num)

Amount

and

recipient

of

outgoin

g SMS

Unsolicited

outgoing

messages

A
p

p
li

c
a
ti

o
n

 SMS Suspicio

us SMS

(SMS

Susp)

Amount

of SMS

sent to

recipient

s not in

contacts

Spyware or

registration to

premium

services

A
p

p
li

c
a
ti

o
n

Critical

API

Adminis

trator

App

Verify if

an app

attempts

to get

admin

privilege

s

Apps which

attempt to take

control of the

device

A
p

p
li

c
a
ti

o
n

 Critical

API

New

App

Installati

on

Verify if

an app

attempts

to install

a new

one

Unauthorized

app

installations

A
p

p
li

c
a
ti

o
n

Critical

API

Process

List

Verify if

an app

generate

s high

number

of

processe

s

Buffer

overflow

(Rootkit)

attacks

A
p

p
li

c
a
ti

o
n

Critical

API

Critical

SysCalls

Amount

of

critical

system

calls

generate

d by an

app

Apps that

access files

and resources

in backround

(Spyware,

Botnet and

Trojan)

U
se

r

User

Activity

On Call Verify if

a phone

call is

ongoing

Unsolicited

activities of

Spyware,

Botnet,

Installer and

Rootkit

U
se

r

User

Activity

Screen

On

Verify if

the

device

screen is

on

Unsolicited

activities of

Spyware,

Botnet,

Installer and

Rootkit

P
a
c
k

a
g
e

App

Metadat

a

Permissi

ons

requeste

d

(manifes

t.xml)

Riskines

s of app

Suspicious

requests of

dangerous

permissions

P
a
c
k

a
g
e

App

Metadat

a

Market

Info

(User

scores, .

. .)

Populari

ty of app

Trojan

Table 1: Levels of analysis and features at

different levels

VII. MODULES

EMADAM can be logically decomposed into four

main architectural blocks: App Risk Assessment,

Global Monitor, Per App Monitor, User Interface

& Prevention and Deployment. The first one is the

App Risk Assessment, which includes the App

Evaluator that implements an analysis of metadata

of an app package (apk) (permission and market

data), before the app is installed on the device. This

evaluation computes the app’s risk score, i.e. the

likelihood that the app is a malware. Based on this

risk evaluation, this component populates a set of

suspicious apps (App Suspicious List), which will

be monitored at run-time. The second block is the

Global Monitor, which monitors the device and OS

features at three levels, i.e. kernel (SysCall

Monitor), user (User Activity Monitor) and

application (Message Monitor). These features are

monitored regardless of the specific app or system

components generating them, and are used to shape

the current behavior of the device itself. Then,

these behaviors are classified as genuine (normal)

or malicious (anomalous) by the Classifier

component. The third block is the Per-App

Monitor, which implements a set of known

behavioral patterns to monitor the actions

performed by the set of suspicious apps (App

Suspicious List), generated by the App Risk

Assessment, through the Signature-Based Detector.

Finally, the User Interface & Prevention

component includes the Prevention module, which

stops malicious actions and, in case a malware is

found, handles the procedure for removing

malicious apps using the User Interface (UI). The

UI handles notifications to device user, in

particular:

(i) The evaluation of the risk score of

newly-downloaded apps by the App

Evaluation.

(ii) The reporting of malicious app

(Notify) and

(iii) To ask the user whether to remove

them (Remove Malicious App).

A. APP RISK ASSESSMENT

When a new app is installed on the device (deploy-

time), the App Evaluator component intercepts and

hijacks the installation event. This component

analyzes the metadata of the new app to assess its

risk, by retrieving features from the app package,

related to critical operations, and from the market,

related to app reputation. In detail, these features

are: (i) the permissions declared in the manifest, (ii)

the market of provenance, (iii) the total number of

downloads, (iv)the developer reputation and (v) the

International Journal of Engineering Trends and Technology (IJETT) – Volume 58 Issue 3- April 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 154

user rating. The five parameters are analyzed

through a hierarchical algorithm which returns a

decision on the riskiness of the app classifying it as

safe or risky. Based on this decision, the user can

choose whether to continue the installation (or not)

of the new app. If the user chooses to install a risky

app, its package name is recorded in the

EMADAM App Suspicious List and is

continuously monitored looking for the known

behavioral patterns. Note that EMADAM extracts

all these pieces of information in a process which is

totally transparent to the user.

The user can, however, decide whether she prefers

to receive a notification of the decision of the App

Evaluator, or to keep the process invisible. In the

following, we assume that the user chooses the

transparent approach (i.e., new apps are always

installed, but inserted into the App Suspicious List

if risky), as to allow EMADAM to enforce security

policies on the device. It is worth noting that the

App Evaluator is not a detector of malicious apps.

Instead, the App Evaluator aims at finding apps

which are risky, which should be monitored at run-

time by EMADAM, improving the overall

performance.

B. GLOBAL MONITOR

The Global Monitor is at the core of the EMADAM

framework, since it is responsible of collecting the

run-time device behaviors and classifying them as

“genuine” or “malicious”. In EMADAM, a

behavior is represented through a vector of

features. For each of them, EMADAM records how

many times a specific feature has been used in a

period of time Tk. The features are extracted from

different kinds of dynamic events : User Activity,

Critical API (in particular, SMS, i.e. text messages)

and System Call (Sys Calls). The Actions Logger is

the component that records all these features into a

vector, which is then fed to the Classifier. This

component is trained to recognize genuine

behaviors related to normal device usage, and

malicious behavioral patterns deviating from the

genuine ones, derived from the seven classes of

malware. The classifier correlates features from the

three monitored levels, and detects misbehaviors

which could pass unnoticed if monitored separately

on the single levels. The Global Monitor is

effective in detecting malicious behaviors,

especially for SMS Trojan, Rootkit, Installers and

Ransomware.

1) User Activity and Message Monitor: The User

Activity and Message Monitor allow EMADAM to

intercept calls to security relevant API functions,

namely related to SMS messages and user activity.

As we have previously recalled, these features are

critical from a security point of view to detect SMS

sent to premium-numbers and/or without the user

knowledge. EMADAM hijacks security relevant

methods, by monitoring their actual parameters and

controlling the final outcome of the action. In

particular, EMADAM hijacks the

SendTextMessage() and SendDataMessage()

methods to control the events of outgoing SMS

messages . Furthermore, using standard Android

APIs, EMADAM also verifies

 (i) if the user is interacting with the device,

(ii) if the device screen is on/off and

(iii) if a phone call is ongoing.

These elements are used to assess when the user is

active. In particular, we can categorize the status of

the user as being in one of two possible states

(active or idle), which are strongly dependent on

the activity of the phone itself. In the first user

activity state (active) either (i) is on, or (ii) the

screen is off but a phone call is ongoing. In fact,

when the user is active, the phone has to show

interactive contents on the screen and receives

inputs from the user, or handles the elements

involved in a phone call. Otherwise, in the second

user activity state (idle), the phone is not active.

2) Action Logger and Classifier: Among all the

features that EMADAM collects, the Action

Logger retrieves 14 features from three classes at

three distinct levels (kernel, application, user). In

detail, the first eleven features concern the system

calls related to file modification and inter-

component communication (i.e., open, ioctl, brk,

read, write, exit, close, sendto, sendmsg, recvfrom,

and recvmsg).

C. PER-APP MONITOR

The Per-App Monitor component is

complementary to the Global Monitor since it is

aimed at detecting additional, signature-based,

known misbehaviors. The Per-App monitor is

based on a set of known malicious behavioral

patterns which considers the Suspicious App List

created by the App Risk Assessment module, the

alerts raised by the classifiers and a set of features

at application-level not considered by the classifier.

The Per-App monitor exploits behavioral patterns

which represent suspicious behaviors that have

been inferred by analyzing the behavioral classes of

malware at API level and kernel level.

To consider these behavioral patterns, Per-App

Monitor constantly monitors three features,

namely:

(i) The list of apps with administrator

privileges, which are those apps that can

access a specific set of dangerous security

International Journal of Engineering Trends and Technology (IJETT) – Volume 58 Issue 3- April 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 155

relevant API and that cannot be removed

unless the privileges are revoked,

(ii) The SMS default app, which is the app

that by default handles the operations

related to text messages and that can be

changed by the user,

(iii) The app in foreground, which is the app

currently interacting with the user.

D. USER INTERFACE & PREVENTION

The User Interface & Prevention includes the

Prevention module that acts as a security

enforcement mechanism by blocking the detected

misbehaviors related to behavioral patterns, e.g. a

SMS being sent without the user authorization. In

such a case, the User Interface (UI) module handles

the process for removing the responsible app.

The UI conveys to the user all the events which

require an active interaction, such as for removing

malicious apps, and is also used by the user to

select which behaviors should be blocked or

allowed. Finally, the UI is exploited by the App

Evaluator to communicate to the user the risk score

of a new app at deploy-time. In this case, the user

can then decide whether to continue the installation

(or not) of the app.

E. DEPLOYMENT

EMADAM comes as a package which contains the

EMADAM apk7, implementing the User Interface

and Prevention Modules, the App Evaluator, the

Per-App Monitor, and Global Monitor. The

EMADAM package also contains the Superuser8

apk, for handling attempts of accessing root

privileges, and the X-posed Installer apk, for

hooking and handling events relevant to the Per-

App Monitor. When installed, EMADAM deploys

a kernel monitoring module, by issuing the insmod

command. This command, and the X-posed

Installer, requires root access.

VIII. RELATED WORKS

Taintdroid[5] is a security framework for android

devices which tracks information flow to avoid

malicious stealing of sensitive information.

Differently from EMADAM TaintDroid targets a

very specific class of attacks. Moreover,

TaintDroid requires a custom ROM of the Android

system, to implement the information flow

mechanisms. A behavioral analysis of Android

apps at the system call level is presented in [35].

The authors propose a framework called

CopperDroid that discerns good behaviors from

bad ones, by automatically stimulating malicious

apps to misbehave through instrumentation. The

analysis of behaviors is automatic, which means

that the behavior of the stimulated app by user

interaction is not considered as in EMADAM.

Android Security Framework (ASF) [34] is a

generic and extensible security framework for

Android that provides security API to facilitate the

inclusion of security extensions in Android. This

approach is orthogonal to EMADAM: the goal of

EMADAM is to detect malware, i.e. anomalies,

while ASF is more oriented to the enforcement of

policies. The authors of [31] presents a system

which aim at detecting root kit hidden in

Trojanized apps. This framework, Droid Analyzer,

identifies the features which are typical of root kits

and then looks for them statically in the code of

apps, performing the analysis on an external server.

On the contrary, EMADAM performs the analysis

on the mobile device, and is focused on several

classes of malware. MOSES [36] is a policy-based

framework that enforces software isolation of apps

(and data) on Android. EMADAM is more focused

on malware detection, even if it allows users to

define some high-level policies for apps.

Alterdroid [33] is a tool that compares the

differences in behavior between an original app and

automatically generated version that contain

modifications (faults) to detect hidden malware,

such as in pictures. Differently from EMADAM,

Alterdroid performs static analysis and does not

target general malware, being not able to detect

pieces of malware that do not hide malicious code

in static resources. [37] proposes a method for

malware detection based on embeddings of

function call graphs in a vector space capturing

structural relationship. This representation is used

to detect Android malware using machine learning

techniques by achieving a good accuracy.

Similarly, [32] classifies Android malware via

dependency graphs by extracting a weighted

contextual API dependency graph as program

semantics to construct feature sets. These

approaches implement a static detection of Android

malware while EMADAM implements both static

and runtime analysis. [38] statically analyzes app to

derive a set of features for malware detection at

application-level and evaluates several classifiers

for Android apps. EMADAM also analyzes system

calls and user activities and classifies the activities

at run-time. Similarly, DREBIN [39] performs

static analysis of Android apps to gather features

that are embedded in a joint vector space, such that

typical patterns indicative for malware can be

automatically identified and used for explaining the

decision. [40] presents a method for screening

malicious Android apps that uses the requested

permissions and a metric that measures the

riskiness of an app based on a data-flow graph.

These data are used with a set of machine learning

algorithms to classify new apps as malicious or

benign with an accuracy of 96% with less than 1%

false positives. An approach similar to the App

Classifier of EMADAM is presented in [41], which

International Journal of Engineering Trends and Technology (IJETT) – Volume 58 Issue 3- April 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 156

proposes to communicate an index assessing the

risk level of an Android application. However, the

proposed index is mainly intended for a

comparison between similar apps, pushing the user

to choose the less risky.

IX. CONCLUSION

Starting from the end of 2011, attackers have

increased their efforts toward Android

Smartphones and tablets, producing and

distributing hundreds of thousands of malicious

apps. These apps threaten the user data privacy,

money and device integrity, and are difficult to

detect since they apparently behave as genuine

apps bringing no harm. This project proposes

EMADAM, a multi-level host-based malware

detector for Android devices. By analyzing and

correlating several features at four different

Android levels, EMADAM is able to detect

misbehaviors from malware behavioral classes that

consider 125 existing malware families, which

encompass most of the known malware. To the best

of our knowledge, EMADAM is the first system

which aims at detecting and stopping at run-time

any kind of malware, without focusing on a

specific security threat, using a behavior-based and

multi-level approach.

REFERENCES

[1] “Global mobile statistics 2014 part a: Mobile

subscribers; handset market share; mobile operators,”

http://mobiforge.com/ research-analysis/global-mobile-

statistics-2014-part-a-mobilesubscribers-handset-

market-share-mobile-operators, 2014.

[2] “Sophos mobile security threat reports,” 2014, last

Accessed: 20 November 2014. [Online].Available:

http://www.sophos.com/ en-us/threat-center/mobile-

security-threat-report.aspx

[3] M. G. Christian Funk, “Kaspersky security bullettin

2013,” December 2013. [Online]. Available:

http://media.kaspersky. com/pdf/KSB 2013 EN.pdf

[4] A. Reina, A. Fattori, and L. Cavallaro, “A system call-

centric analysis and stimulation technique to

automatically reconstruct android malware behaviors,”

EuroSec, April, 2013.

[5] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.

Sadeghi, and B. Shastry, “Towards taming privilege-

escalation attacks on android,” in 19th Annual Network

and Distributed System Security Symposium, NDSS

2012, San Diego, California, USA, February 5-8, 2012,

2012.

[6] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P.

von StypRekowsky, “Appguard fine-grained policy

enforcement for untrusted android applications,” in

Data Privacy Management and Autonomous

Spontaneous Security, ser. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2014, pp. 213–

231.

[7] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh,

“Taming information-stealing smartphone applications

(on android),” in Proceedings of the 4th International

Conference on Trust and Trustworthy Computing, ser.

TRUST’11. Berlin, Heidelberg: Springer-Verlag, 2011,

pp. 93–107. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2022245.2022255

[8] [8] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth, “Taintdroid: An

information-flow tracking system for realtime privacy

monitoring on smartphones,” in Proceedings of the 9th

USENIX Conference on Operating Systems Design and

Implementation, ser. OSDI’10. Berkeley, CA, USA:

USENIX Association, 2010, pp. 1–6. [Online].

Available:

http://dl.acm.org/citation.cfm?id=1924943.1924971

[9] [9] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R.

Sadeghi, and B. Shastry, “Practical and lightweight

domain isolation on android,” in Proceedings of the 1st

ACM Workshop on Security and Privacy in

Smartphones and Mobile Devices, ser. SPSM ’11. New

York, NY, USA: ACM, 2011, pp. 51–62. [Online].

Available:

http://doi.acm.org/10.1145/2046614.2046624

[10] [10] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin,

and D. Wagner, “Android permissions: user attention,

comprehension, and behavior,” in Symposium On

Usable Privacy and Security, SOUPS ’12, Washington,

DC, USA - July 11 - 13, 2012, 2012, p. 3.

[11] [11] Y. Zhou and X. Jiang, “Dissecting android

malware: Characterization and evolution,” in

Proceedings of the 2012 IEEE Symposium on Security

and Privacy, ser. SP ’12. Washington, DC, USA: IEEE

Computer Society, 2012, pp. 95–109. [Online].

Available: http://dx.doi.org/10.1109/SP.2012.16

[12] [12] Schlegel, R. et al., 2011. Soundcomber: A stealthy

and context-aware sound trojan for smartphones.

Proceedings of the. Available at:

http://scholar.google.com/scholar?hl=en&btnG=Search

&q=intitle:Sou ndcomber+:+A+Stealthy+and

+ContextAware+Sound+Trojan+for+Smartphones#0.

[13] [13] David, F. & Chan, E., 2008.Cloaker: Hardware

supported rootkit concealment.Security and Privacy.

Available at:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=45

31160 [Accessed February 2, 2014].

[14] F. Del Bene, G. Dini, F. Martinelli, I. Matteucci, M.

Petrocchi, A. Saracino, and S. D., “Risk analysis of

android applications: A multi-criteria and usable

approach,” Consiglio Nazionale delle Ricerca - Istituto

di Informatica e Telematica, Tech. Rep. TR-04- 2015,

2015. [Online]. Available:

http://www.iit.cnr.it/node/32795

[15] C. Gates, J. Chen, N. Li, and R. Proctor, “Effective risk

communication for android apps,” Dependable and

Secure Computing, IEEE Transactions on, vol. 11, no.

3, pp. 252–265, May 2014.

[16] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra,

“Madam: A multi-level anomaly detector for android

malware,” in Computer Network Security, ser. Lecture

Notes in Computer Science, I. Kotenko and V.

Skormin, Eds. Springer Berlin Heidelberg, 2012, vol.

7531, pp. 240–253.

[17] T. C., “Say goodbye to custom stock roms and hello to

xposed framework,” May 2013. [Online]. Available:

http://www.xda-developers.com/android/say-

goodbyeto-custom-stock-roms-and-hello-to-xposed-

framework/

[18] D.-K. Kang, D. Fuller, and V. Honavar, “Learning

classifiers for misuse and anomaly detection using a

bag of system calls representation,” in Information

Assurance Workshop, 2005. IAW ’05. Proceedings

from the Sixth Annual IEEE SMC, June 2005, pp. 118–

125.

[19] D. Mutz, F. Valeur, G. Vigna, “Anomalous System Call

Detection,” ACM Transactions on Information and

System Security, vol. 9, no. 1, pp. 61–93, February

2006.

[20] G. Vigna, W. Robertson, and D. Balzarotti, “Testing

networkbased intrusion detection signatures using

mutant exploits,” in Proceedings of the 11th ACM

International Journal of Engineering Trends and Technology (IJETT) – Volume 58 Issue 3- April 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 157

Conference on Computer and Communications

Security, ser. CCS ’04. New York, NY, USA: ACM,

2004, pp. 21–30. [Online]. Available:

http://doi.acm.org/10.1145/1030083.1030088

[21] T. M. Cover, P.E. Hart, “Nearest Neighbor Pattern

Classification,” IEEE Transactions on Information

Theory, vol. IT-13, no. 1, pp. 21–27, January 1967.

[22] O. Kramer, “Dimensionality reduction by unsupervised

k-nearest neighbor regression,” in Machine Learning

and Applications and Workshops (ICMLA), 2011 10th

International Conference on, vol. 1, Dec 2011, pp. 275–

278.

[23] A. Developer, “Android smsmanager api reference

page,” 2015. [Online]. Available:

http://developer.android.com/reference/

android/telephony/SmsManager.html

[24] V. Misra, “What are the exact mechanisms/flaws

exploited by the ”rage against the cage” and ”z4root”

android

exploits?”[Online].Available:http://www.quora.com/W

hat-are-the-exactmechanisms-flaws-exploited-by-the-

rage-against-the-cage-andz4root-Android-exploits

[25] B. Wolfe, K. Elish, and D. Yao, “Comprehensive

behavior profiling for proactive android malware

detection,” in Information Security, ser. Lecture Notes

in Computer Science, S. Chow, J. Camenisch, L. Hui,

and S. Yiu, Eds. Springer International Publishing,

2014, vol. 8783, pp. 328–344. [Online]. Available:

http://dx.doi.org/10.1007/978-3-319-13257-0 19

[26] H. Kayacik and A. Zincir-Heywood, “Mimicry attacks

demystified: What can attackers do to evade

detection?” in Privacy, Security and Trust, 2008. PST

’08. Sixth Annual Conference on, Oct 2008, pp. 213–

223.

[27] M. J. Darnell, “Acceptable system response times for tv

and dvr,” in Proceedings of the 5th European

Conference on Interactive TV: A Shared Experience,

ser. EuroITV’07. Berlin, Heidelberg: Springer-Verlag,

2007, pp. 47–56. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1763017.1763025

[28] “How antivirus affect battery life,”

https://www.luculentsystems. com/techblog/minimize-

battery-drain-by-antivirus-software/, last accessed on

23/02/2015.

[29] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P.

McDaniel, and A. N. Sheth, “Taintdroid: An

information flow tracking system for real-time privacy

monitoring on smartphones,” Commun. ACM, vol. 57,

no. 3, pp. 99–106, Mar. 2014. [Online]. Available:

http://doi.acm.org/10.1145/2494522

[30] M. Sun, M. Zheng, J. C. S. Lui, and X. Jiang, “Design

and implementation of an android host-based intrusion

prevention system,” in Proceedings of the 30th Annual

Computer Security Applications Conference, ser.

ACSAC ’14. New York, NY, USA: ACM, 2014, pp.

226–235.

[Online].Available:http://doi.acm.org/10.1145/2664243

.2664245

[31] S.-H. Seo, A. Gupta, A. M. Sallam, E. Bertino, and K.

Yim, “Detecting mobile malware threats to homeland

security through static analysis,” Journal of Network

and Computer Applications, vol. 38, no. 0, pp. 43 – 53,

2014.

[32] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-

aware android malware classification using weighted

contextual api dependency graphs,” in Proceedings of

the 2014 ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’14. New York,

NY, USA: ACM, 2014, pp. 1105–1116. [Online].

Available:http://doi.acm.org/10.1145/2660267.2660359

[33] G. Suarez-Tangil, J. Tapiador, F. Lombardi, and R. Di

Pietro, “Thwarting obfuscated malware via differential

fault analysis,” Computer, vol. 47, no. 6, pp. 24–31,

June 2014.

[34] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-

Rekowsky, “Android security framework: Extensible

multi-layered access control on android,” in

Proceedings of the 30th Annual Computer Security

Applications Conference, ser. ACSAC ’14. New York,

NY, USA: ACM, 2014, pp. 46–

55.[Online].Available:http://doi.acm.org/10.1145/2664

243.2664265

[35] A. Reina, A. Fattori, and L. Cavallaro, “A system call-

centric analysis and stimulation technique to

automatically reconstruct android malware behaviors,”

in Proceedings of the 6th European Workshop on

System Security (EUROSEC), Prague, Czech Republic,

April 2013.

[36] Y. Zhauniarovich, G. Russello, M. Conti, B. Crispo,

and E. Fernandes, “Moses: Supporting and enforcing

security profiles on smartphones,” Dependable and

Secure Computing, IEEE Transactions on, vol. 11, no.

3, pp. 211–223, May 2014.

[37] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck,

“Structural detection of android malware using

embedded call graphs,” in Proceedings of the 2013

ACM Workshop on Artificial Intelligence and Security,

ser. AISec ’13. New York, NY, USA: ACM, 2013, pp.

45–54. [Online]. Available:

http://doi.acm.org/10.1145/2517312. 2517315

[38] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining

apilevel features for robust malware detection in

android,” in Security and Privacy in Communication

Networks, ser. Lecture Notes of the Institute for

Computer Sciences, Social Informatics and

Telecommunications Engineering, T. Zia, A. Zomaya,

V. Varadharajan, and M. Mao, Eds. Springer

International Publishing, 2013, vol. 127, pp. 86–103.

[Online]. Available: http://dx.doi.org/10.1007/978-3-

319-04283-1 6

[39] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K.

Rieck, ¨ and C. Siemens, “Drebin: Effective and

explainable detection of android malware in your

pocket,” in Proc. of NDSS, 2014.

