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Abstract—In this paper the essential features of a 

random walk are described. Random walk is 

correlated to other physically observed motions. 

Methods to simulate the random walk is briefly 

discussed. 
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I. INTRODUCTION 

(Size 10 & Normal)Statistical mechanics is 

almost invariably introduced through the concept of 

steps taken by a drunken walker/random walker. The 

term Random Walk was coined by Karl Pearson[1] 

and they are a very popular model of stochastic 

processes with a rich history [2,3]. Various physical 

parameters such as mean values, dispersion etc 

which could be related to some physical events such 

as Brownian motion. This problem of studying the 

random steps taken in one dimension has been in 

turn extended to other forms of random walks 

(shown in the Fig.1below) which in turn is related to 

some physical events or processes. 

Mathematically, a random walk is a 

stochastic sequence {Sn}, with S0=0 defined by 


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n

1k
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Where {Xk} are independent and 

identically distributed random variables. 

II. RANDOMWALK 

The theory of random walk is restated in 

terms of a particle picture and the walks are replaced 

by the successive steps the particle would take in a 

random environment.  

In this introductory article we mainly 

consider Random walks on a lattice which is a 

special case of the full class of random walks. A 

random walk consists of a connected path formed by 

randomly adding new bonds to the end of the 

existing walk, subject to any restrictions which 

distinguish one kind of random walk from another. 

The mean-square end-to-end distance  2R  of a 

walk with N steps may diverge as N goes to infinity 

as [4] 

   ......122  bNaNNR 
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In the above equation ν is a „critical exponent‟ that 

determines the universality class. Here a andb are 

some „non universal‟ constants which depend on the 

model and lattice structure chosen and Δ is a 

„correction to scaling‟ exponent. In such cases there 

is a strong analogy to critical behaviour in 

percolation or in temperature driven transitions in 

systems of interacting particles. The equivalent of 

the partition function for a system undergoing a 

temperature driven transition is given by the quantity 

ZN which simply counts the number of distinct 

random walks on the lattice and which behaves as 
N

eff

1
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As ,N   is another critical exponent and effq  

is an effective coordination number which is related 

to the exchange constant in a simple magnetic model. 

The formalism for describing this geometric 

phenomenon is thus the same as for temperature 

driven transitions, even including corrections to 

scaling in the expression for the mean-square end-to-

end distance as represented by the term in 
N in 

equation (2). The determination of   and   for 

different kinds of walks is essential to the 

classification of these models into different 

universality classes. We now know that the lattice 

dimensionality as well as the rules for the generation 

of walks affect the critical exponents and thus the 

universality class [5]. Examples of several kinds of 

walks are shown in Fig 1. 

In the case of a simple random walks 

defined by ,1Xk  with   p1XP k   and 

  qp11XP k   the walker may cross the 

walk an infinite number of times with no cost. In d 

dimensions the end-to-end distance diverges with the 

number of steps N according to 

  2
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III.  SIMULATION & RESULT 

 A simulation of the simple random walk 

can be carried out by picking a starting point and 

generating a random number[6] to determine the 

direction of each subsequent, additional step. After 

each step the end-to-end distance can be calculated 

(Fig 2). Errors may be estimated by carrying out a 

series of independent random walks and performing 

a statistical analysis of the resultant distribution. 

Thus, the simple random walk has a trivial result 

2

1
  . 

 At this point we briefly mention a simple 

variant of the random walk for which the choice of 
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the (n+1) step from the nth step of a return to the 

point reached at the (n-1) step, i.e. an „immediate 

reversal‟, is forbidden. Although for this so-called 

„non-reversal random walk‟ (NRRW) the exponents 

remain unchanged, i.e. 1,
2

1
  as for the 

ordinary random walk, prefactors change. This 

means that in eqn.(2)  1qqeff   for the NRRW 

whereas qqeff  for the ordinary random walk, etc. 

This NRRW model represents, in fact, a rather 

useful approach for the modelling of polymer 

configurations in dense melts, and since one merely 

has to keep track of the previous step and then 

choose one of the remaining 1q  possibilities, it is 

straightforward to implement. Furthermore, this 

NRRW model is also a good starting point for the 

simulation of „self-avoiding walk‟ [7,8]. 

 

 

               

             

 

 

 

 

 

 

 

 

 

 

 

 

               

               

               

 
 

Fig 1: Examples of different kinds of random walks on a square lattice. For the RW every possible new step has 

the same probability. For the SAW the walk dies if it touches itself. The GSAW walker recognizes the danger 

and takes either of the two steps shown with equal probability 

 

 

 

 

Fig 2: Simulation of a random walk 

 

 

IV.  CONCLUSION 
We in this article have only tried to 

scratch the surface of a widely studied 

subject. I have not included some of the 
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more elaborate articles and review papers 

so that to the uninitiated the task doesn‟t 

become too daunting. If one may wish to 

look further they can do so by referring to 

papers mentioned in the references here.  
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