
International Journal of Engineering Trends and Technology (IJETT) – Volume 60 Number 3 - June 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 180

Parallel Eclat with Large Data Base Parallel

Algorithm and Improve its Effectiveness
Ms. Shruti Ingle

1
, Mr. Abhay Kothari

2

AITR, Indore Department of CSE

Abstract
To better utilize the aggregate computing

resources of parallel machines, a localized algorithm

based on parallelization of Eclat was proposed and

exhibited excellent scalability. It makes use of a vertical

data layout by transforming the horizontal database

transactions into vertical lists of item sets. By name, the

list of an item set is a sorted list of ID’s for all

transactions that contain the item set. Frequent k -item

sets are organized into disjoint equivalence classes by

common (k 1)-prefixes, so that candidate (k+1)-item

sets can be generated by joining pairs of frequent k-

item sets from the same classes. The support of a

candidate item set can then be computed simply by

intersecting the -lists of the two component subsets.

Task parallelism is employed by dividing the mining

tasks for different classes of item sets among the

available processes. The equivalence classes of all

frequent 2-itemsets are assigned to processes and the

associated lists are distributed accordingly. Each

process then mines frequent item sets generated from its

assigned equivalence classes independently, by

scanning and intersecting the local lists. The steps for

the parallel Eclat algorithm are presented below for

Distributed-memory multiprocessors divide the

database evenly into horizontal partitions among all

processes.

I. INTRODUCTION

To count supports of candidates, we need to go

through transactions in the transaction database and

check if transactions contain candidates. Since the

transaction database is usually very large, it is not

always possible to store them into main memory.

Furthermore, to check if a transaction

containing an item set is also a non-trivial task. So an

important consideration in frequent item set mining

algorithms is the representation of the transaction

database to facilitate the process of counting support.

There are two layouts that algorithms usually employ to

represent transaction databases: horizontal and vertical

layout. In the horizontal layout, each transaction Tiis

represented asTi (tid,I) wheretid is the Transaction

identifier and is an item set containing items occurring

in the transaction. The initial transaction consists of all

transactions Ti.

Figure 1. Horizontal and Vertical Layout

International Journal of Engineering Trends and Technology (IJETT) – Volume 60 Number 3 - June 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 181

In the vertical layout, each item iK in the item base B is

represented as ik: { ik, t(ik)} and the initial transaction

database consists of all items in the item base.

For both layouts, it is possible to use the bit

format to encode and also a combination of both

layouts can be used[9].

To count the support of an item set X using the

horizontal layout, one has to go through all transactions

and check if transactions contain the itemset. Therefore,

both the number of transactions in the transaction

database and the size of transactions account for the

consuming time of the support counting step.

When using the vertical layout, in the

transaction database the support of an item set is the

size of its data set. To count the support of an item set

X, firstly its tidset will be generated by intersecting the

tidsets of any two item sets

This could be easily deduced from the

definition of tidset. Then the support of X is the size of

its tidset. In algorithms that employ the vertical layout,

2 – itemsets are generated from the initial transaction

database and thennext generated by K-itemsets are from

(k-1) – itemsetsAs the size of item sets increases, the

size of their transition sets will decrease, using the

vertical layout, counting support is usually faster and

using less memory than counting support when using

the horizontal layout [8].

II. RELATED WORK

Finding frequent item sets or patterns has a

strong and long-standing tradition in data mining. It is a

fundamental part of many data mining applications

including market basket analysis, web link analysis,

genome analysis and molecular fragment mining.

Since its introduction by Agrawal et al[1], it

has received a great deal of attention and various

efficient and sophisticated algorithms have been

proposed to do frequent itemset mining. Among the

best-known algorithms are Apriori, Eclat and FP-

Growth.

The Apriorialgorithm[2]uses a breadth-first

search and the downward closure property, in which

any superset of an infrequent itemset is infrequent, to

prune the search tree. Apriori usually adopts a

horizontal layout to represent the transaction database

and the frequency of an itemset is computed by

counting its occurrence in each transaction.

FP-Growth [3] employs a divideand-conquer

strategy and a FP-tree data structure to achieve a

condensed representation of the transaction database. It

is currently one of the fastest algorithms for frequent

pattern mining.

Eclat[4] takes a depth-first search and adopts a

vertical layout to represent databases, in which each

item is represented by a set of transaction IDs (called a

tidset) whose transactions contain the item. Tidset of an

itemset is generated by intersecting tidsets of its items.

Because of the depth-first search, it is difficult to utilize

the downward closure property like in Apriori.

However, using tidsets has an advantage that there is no

need for counting support, the support of an itemset is

the size of the tidset representing it. The main operation

of Eclat is intersecting tidsets, thus the size of tidsets is

one of main factors affecting the running time and

memory usage of Eclat. The bigger tidsets are, the more

time and memory are needed.

Zaki and Gouda [5] proposed a new

verticaldata representation, called Diffset, and

introduced dEclat, an Eclatbased algorithm using

diffset. Instead of using tidsets, they use the difference

of tidsets (called diffsets). Using diffsets has reduced

drastically the set size representing itemsets and thus

operations on sets are much faster. dEclat had been

shown to achieve significant improvements in

performance as well as memory usage over Eclat,

especially on dense databases[5]. However, when the

dataset is sparse, diffset loses its advantage over tidset.

Therefore, Zaki and Gouda suggested using tidset

format at the start for sparse databases and then

switching to different set format later when a switching

condition is met.

III. PROPOSE WORK PARALLEL APPROACH

FOR ECLAT

There is a master node, which acts as a

coordinator; it is in charge of assigning equivalence

classes in the initial equivalence class to slave nodes.

When a node has finish an equivalence class from the

initial equivalence class, it will ask master node for

another one, if there is no more equivalence class in the

initial equivalence class, the node will become idle and

it is called a free node. The master will keep a list of

free nodes. When the master node cannot return an

equivalence class in the initial equivalence class to a

 So,

International Journal of Engineering Trends and Technology (IJETT) – Volume 60 Number 3 - June 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 182

slave node; the slave node will be added into the list of

free nodes.

When a slave node has to process an

equivalence, whose estimation load is over some

threshold, it is called an overload node. The overload

node will ask the master node for a free node, the

master will then inform both the overload node and the

free node about their partner. The overload node and

free node then communicate to transfer job from the

overload node to the free node.

The pseudo code for the scheme is as below: Slave

node:

The first parallel approach for Eclat was

proposed by Zaki et al [11].The basic idea is that the

search tree could be divided into sub trees of

equivalence classes. And since generating item sets in

sub trees of equivalence classes is independent from

each other, we could do frequent itemsets mining in

subtrees of equivalence classes in parallel.So, the

straightforward approach to parallelize parallel Eclat, is

to consider equal equivalence class as a job.And we can

distribute jobs to different nodes and nodes could work

on jobs without any synchronization.

 equivalence classes are extremely different.

Figure 2: Parallel Approach

This seems a perfect parallel scheme. The

workloads here are not equal and we may encounter

the problem of load unbalancing. Experiments showed

that for some datasets, classes are extremely different.

In these cases, even if we add more nodes to our

system, we cannot improve the overall performance.

IV. RESULT

A. Comparison Between Éclat and Parallel Éclat

Algorithm with Number of Support and Its

Execution Time

B. Comparison between Eclat and Parallel Eclat

Algorithm with Number of Confidence and its

Execution Time

Figure 4 Numbers of Confidence and Its

Execution Time

We also proposed a new parallel approach for

Éclat algorithm. This new approach could address the

problem of load unbalancing in the existing approach.

Consequently, Éclat using this new parallel approach

could exploit the power of clusters or distributed

systems with many nodes. Experiments show that Éclat

using our proposed parallel approach was not suffered

from load unbalancing problem and the approach had

also increased the scalability of Eclat when running in a

parallel environment. In the case when datasets did not

cause load unbalancing problem for Éclat using the

existing parallel approach, Éclat using our proposed

Figure 3: Numbers of Support and Its Execution Time

International Journal of Engineering Trends and Technology (IJETT) – Volume 60 Number 3 - June 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 183

approach was just a little slower than Eclat using the

existing parallel approach, while in the case when Éclat

using the existing parallel approach suffered from load

unbalancing problem, Éclat using our proposed parallel

approach was significantly faster than Éclat using the

existing parallel approach.

V. CONCLUSION AND FUTURE WORK

In this thesis we studied quite thoroughly

Parallel Éclat algorithm and introduced a novel data

format for it, combination set and different set, which

uses both set and different set formats to represent a

database in vertical layout. This new format can fully

take advantages of both set and different set formats

and eliminates the need for switching from set to

different Data set. Experiments showed that it reduced

memory usage of Eclat. It also speeded up Éclat

though not significantly. We showed the benefit of

sorting different sets of data in descending order and

sets in ascending order according to size, which

significantly reduced the memory usage and increased

parallel Éclat by several orders of magnitude. Log

ECLAT algorithm combines ECLAT algorithm and

method that uses special candidates to find frequent

patterns from data base. In this way, Log ECLAT

algorithm cans extract necessary information from the

database with fewer times of creating a new database.

Log ECLAT algorithm also performs well with the

change of number of transactions and support

thresholds in experiment. So Log ECLAT can find

frequent patterns efficiently from a large database.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A.N. Swami, "Mining

association rules between sets of items in large databases," in

ACM SIGMOD International Conference on Management of

Data, Washington, 1993.

[2] R. Agrawal, and R. Srikant, "Fast algorithms for mining

association rules," in 20th International Conference on Very

Large Data Bases, Washington, 1994.

[3] J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without

candidate generation," in ACM SIGMOD International

Conference on Management of Data, Texas, 2000.

[4] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "New

algorithms for fast discovery of association rules," in Third

International Conference on Knowledge Discovery and Data

Mining, 1997.

[5] a. K. G. M.J. Zaki, "Fast vertical mining using diffsets," in The

nineth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2003.

[6] Paul W. Purdom, Dirk Van Gucht, and Dennis P. Groth,

"Average case performance of the apriori algorithm," vol. 33,

p. 1223–1260, 2004.

[7] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri,

"Adaptive and resource-aware mining of frequent sets," in

Proceedings of the 2002 IEEE International Conference on

Data Mining, 2002.

[8] P. Shenoy, J.R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa,

and D. Shah, "Turbo-charging vertical mining of large

databases," in ACM SIGMOD International Conference on

Management of Data, 2000.

[9] B. Goethals, "Survey on frequent pattern mining," 2002.

[10] Yan Zhang, Fan Zhang, Jason Bakos,

"Frequent Itemset Mining on LargeScale Shared Memory

Machines," 2011.

[11] Mohammed JaveedZaki, SrinivasanParthasarathy, and Wei Li,

"A Localized Algorithm for Parallel AssociationMining," in

9th Annual ACM Symposium on Parallel Algorithms and

Architectures, 1997.

[12] "Frequent Repository," Itemset [Online]. Mining Available:

Dataset http://fimi.ua.ac.be/data/.

[13] Zaki, M. J., Parthsarathy, S., Ogihara, M., and Li, W. New

Algorithms for Fast Discovery of Association Rules. KDD,

283-286. 1997. Agarwal, R., Aggarwal, C., and Prasad,

V.V.V. 2001.

[14] Goulbourne, G., Coenen, F., and Leng, P. H. Computing

association rule using partial totals. In Proceedings of the 5th

European Conference on Principles and Practice of

Knowledge Discovery in Databases, 54-66. 2001.

[15] Pei, J., Han, J., Nishio, S., Tang, S., and Yang, D. H-Mine:

Hyper-Structure Mining of Frequent Patterns in Large

Databases. Proc.2001 Int.Conf.on Data Mining. 2001.

