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Abstract 
To better utilize the aggregate computing 

resources of parallel machines, a localized algorithm 

based on parallelization of Eclat was proposed and 

exhibited excellent scalability. It makes use of a vertical 

data layout by transforming the horizontal database 

transactions into vertical lists of item sets. By name, the 

list of an item set is a sorted list of ID’s for all 

transactions that contain the item set. Frequent k -item 

sets are organized into disjoint equivalence classes by 

common (k 1)-prefixes, so that candidate (k+1)-item 

sets can be generated by joining pairs of frequent k-

item sets from the same classes. The support of a 

candidate item set can then be computed simply by 

intersecting the -lists of the two component subsets. 

Task parallelism is employed by dividing the mining 

tasks for different classes of item sets among the 

available processes. The equivalence classes of all 

frequent 2-itemsets are assigned to processes and the 

associated lists are distributed accordingly. Each 

process then mines frequent item sets generated from its 

assigned equivalence classes independently, by 

scanning and intersecting the local lists. The steps for 

the parallel Eclat algorithm are presented below for  

 

Distributed-memory multiprocessors divide the 

database evenly into horizontal partitions among all 

processes. 

 
I. INTRODUCTION 

To count supports of candidates, we need to go 

through transactions in the transaction database and 

check if transactions contain candidates. Since the 

transaction database is usually very large, it is not 

always possible to store them into main memory.  

Furthermore, to check if a transaction 

containing an item set is also a non-trivial task. So an 

important consideration in frequent item set mining 

algorithms is the representation of the transaction 

database to facilitate the process of counting support. 

There are two layouts that algorithms usually employ to 

represent transaction databases: horizontal and vertical 

layout. In the horizontal layout, each transaction  Tiis 

represented asTi (tid,I) wheretid  is the Transaction 

identifier and is an item set containing items occurring 

in the transaction. The initial transaction consists of all 

transactions Ti. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Horizontal and Vertical Layout
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In the vertical layout, each item iK in the item base B is 

represented as ik: { ik, t(ik)} and the initial transaction 

database consists of all items in the item base. 

For both layouts, it is possible to use the bit 

format to encode and also a combination of both 

layouts can be used[9]. 

To count the support of an item set X using the 

horizontal layout, one has to go through all transactions 

and check if transactions contain the itemset. Therefore, 

both the number of transactions in the transaction 

database and the size of transactions account for the 

consuming time of the support counting step.  

When using the vertical layout, in the 

transaction database the support of an item set is the 

size of its data set. To count the support of an item set 

X, firstly its tidset will be generated by intersecting the 

tidsets of any two item sets 

 

This could be easily deduced from the 

definition of tidset. Then the support of X is the size of 

its tidset. In algorithms  that employ the vertical layout, 

2 – itemsets  are generated from the initial transaction 

database and thennext generated by K-itemsets are from 

(k-1) – itemsetsAs the size of item sets increases, the 

size of their transition sets will decrease, using the 

vertical layout, counting support is usually faster and 

using less memory than counting support when using 

the horizontal layout [8]. 

II. RELATED WORK 

Finding frequent item sets or patterns has a 

strong and long-standing tradition in data mining. It is a 

fundamental part of many data mining applications 

including market basket analysis, web link analysis, 

genome analysis and molecular fragment mining.   

Since its introduction by Agrawal et al[1], it 

has received a great deal of attention and various 

efficient and sophisticated algorithms have been 

proposed to do frequent itemset mining. Among the 

best-known algorithms are Apriori, Eclat and FP-

Growth.  

The Apriorialgorithm[2]uses a breadth-first 

search and the downward closure property, in which 

any superset of an infrequent itemset is infrequent, to 

prune the search tree. Apriori usually adopts a 

horizontal layout to represent the transaction database 

and the frequency of an itemset is computed by 

counting its occurrence in each transaction.  

FP-Growth [3] employs a divideand-conquer 

strategy and a FP-tree data structure to achieve a 

condensed representation of the transaction database. It 

is currently one of the fastest algorithms for frequent 

pattern mining.  

Eclat[4] takes a depth-first search and adopts a 

vertical layout to represent databases, in which each 

item is represented by a set of transaction IDs (called a 

tidset) whose transactions contain the item. Tidset of an 

itemset is generated by intersecting tidsets of its items. 

Because of the depth-first search, it is difficult to utilize 

the downward closure property like in Apriori. 

However, using tidsets has an advantage that there is no 

need for counting support, the support of an itemset is 

the size of the tidset representing it. The main operation 

of Eclat is intersecting tidsets, thus the size of tidsets is 

one of main factors affecting the running time and 

memory usage of Eclat. The bigger tidsets are, the more 

time and memory are needed.  

Zaki and Gouda [5] proposed a new 

verticaldata representation, called Diffset, and 

introduced dEclat, an Eclatbased algorithm using 

diffset. Instead of using tidsets, they use the difference 

of tidsets (called diffsets). Using diffsets has reduced 

drastically the set size representing itemsets and thus 

operations on sets are much faster. dEclat had been 

shown to achieve significant improvements in 

performance as well as memory usage over Eclat, 

especially on dense databases[5]. However, when the 

dataset is sparse, diffset loses its advantage over tidset. 

Therefore, Zaki and Gouda suggested using tidset 

format at the start for sparse databases and then 

switching to different set format later when a switching 

condition is met.   

III. PROPOSE WORK PARALLEL APPROACH 

FOR ECLAT 

There is a master node, which acts as a 

coordinator; it is in charge of assigning equivalence 

classes in the initial equivalence class to slave nodes. 

When a node has finish an equivalence class from the 

initial equivalence class, it will ask master node for 

another one, if there is no more equivalence class in the 

initial equivalence class, the node will become idle and 

it is called a free node. The master will keep a list of 

free nodes. When the master node cannot return an 

equivalence class in the initial equivalence class to a 

 So, 



International Journal of Engineering Trends and Technology (IJETT) – Volume 60 Number 3 - June 2018 

  

ISSN: 2231-5381                         http://www.ijettjournal.org                                  Page 182 

 

slave node; the slave node will be added into the list of 

free nodes.   

When a slave node has to process an 

equivalence, whose estimation load is over some 

threshold, it is called an overload node. The overload 

node will ask the master node for a free node, the 

master will then inform both the overload node and the 

free node about their partner. The overload node and 

free node then communicate to transfer job from the 

overload node to the free node. 

The pseudo code for the scheme is as below: Slave 

node: 

The first parallel approach for Eclat was 

proposed by Zaki et al [11].The basic idea is that the 

search tree could be divided into sub trees of 

equivalence classes. And since generating item sets in 

sub trees of equivalence classes is independent from 

each other, we could do frequent itemsets mining in 

subtrees of equivalence classes in parallel.So, the 

straightforward approach to parallelize parallel Eclat, is 

to consider equal equivalence class as a job.And we can 

distribute jobs to different nodes and nodes could work 

on jobs without any synchronization. 

 

 equivalence classes are extremely different.  

 

 

 

 

 

 

Figure 2: Parallel Approach 

 

This seems a perfect parallel scheme. The 

workloads here are not equal and we may encounter 

the problem of load unbalancing. Experiments showed 

that for some datasets, classes are extremely different. 

In these cases, even if we add more nodes to our 

system, we cannot improve the overall performance. 

 

 

 

 

 

 

IV. RESULT 

 

A. Comparison Between Éclat and Parallel Éclat 

Algorithm with Number of Support and Its 

Execution Time  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Comparison between Eclat and Parallel Eclat 

Algorithm with Number of Confidence and its 

Execution Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Numbers of Confidence and Its  

Execution Time  

 

We also proposed a new parallel approach for 

Éclat algorithm. This new approach could address the 

problem of load unbalancing in the existing approach. 

Consequently, Éclat using this new parallel approach 

could exploit the power of clusters or distributed 

systems with many nodes. Experiments show that Éclat 

using our proposed parallel approach was not suffered 

from load unbalancing problem and the approach had 

also increased the scalability of Eclat when running in a 

parallel environment. In the case when datasets did not 

cause load unbalancing problem for Éclat using the 

existing parallel approach, Éclat using our proposed 

Figure 3: Numbers of Support and Its Execution Time 
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approach was just a little slower than Eclat using the 

existing parallel approach, while in the case when Éclat 

using the existing parallel approach suffered from load 

unbalancing problem, Éclat using our proposed parallel 

approach was significantly faster than Éclat using the 

existing parallel approach. 

 

V. CONCLUSION AND FUTURE WORK 

In this thesis we studied quite thoroughly 

Parallel Éclat algorithm and introduced a novel data 

format for it, combination set and different set, which 

uses both set and different set formats to represent a 

database in vertical layout. This new format can fully 

take advantages of both set and different set formats 

and eliminates the need for switching from set to 

different Data set. Experiments showed that it reduced 

memory usage of Eclat. It also speeded up Éclat 

though not significantly. We showed the benefit of 

sorting different sets of data in descending order and 

sets in ascending order according to size, which 

significantly reduced the memory usage and increased 

parallel Éclat by several orders of magnitude. Log 

ECLAT algorithm combines ECLAT algorithm and 

method that uses special candidates to find frequent 

patterns from data base. In this way, Log ECLAT 

algorithm cans extract necessary information from the 

database with fewer times of creating a new database. 

Log ECLAT algorithm also performs well with the 

change of number of transactions and support 

thresholds in experiment. So Log ECLAT can find 

frequent patterns efficiently from a large database.  
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