
International Journal of Engineering Trends and Technology (IJETT) – Volume 60 Number 3 - June 2018 

 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 187 

Private Cloud Containerization using  

Raspberry Pi Network 
Sahana M P1, Sonali Joyce Lobo2 

Asst.professor 

ISE, DSCE Bengaluru, India 

 
 

Abstract 

The existing FOSS IAAS cloud systems 

target enterprise as a primary user, students and 

developers usually cannot afford to maintain their 

own cloud and technical knowledge required to 

maintain is still very high. Raspberry Pi and ARM 

based devices is a series of little single board 

computers which is very affordable and caters to all 

the requirements. Raspberry Pi is a accomplished 

little device that enables people of all ages to explore 

cloud computing. It’s capable of doing everything 

we’d expect a desktop computer to do, from browsing 

the internet and playing high-definition video, to 

making spreadsheet, word-processing, and playing 

games. Students who wants to learn cloud should be 

able to span cloud servers on demand for free in their 

premise. This would definitely make the life of a 

student much better by building pocket cloud on 

demand easily. Raspberry Pi devices are officially 

supported by Docker and Kubernetes which can be 

used to create and orchestrate cloud containers. ARM 

based devices can also be used to spawn Virtual 

Machines using cloud stack. In this paper, Raspberry 

Pi and affordable device is configured with Docker 

and Kubernetes with a supporting Operating System 

to spawn on demand containers and Virtual 

Machines. 

 

Keywords-Docker; Raspberry Pi; Cloud Computing; 

Kubernetes; Containers; 

I. INTRODUCTION 

Raspberry Pi: The Raspberry Pi is a series 
of small single-board computers developed in the 
United Kingdom by the Raspberry Pi Foundation to 
assist the teaching of basic computer science in 
schools and in developing kingdom. Containers: 
Using containers, everything required to make a piece 
of software run is packaged into isolated containers. 
Unlike VMs, containers do not bundle a full 
operating system - only libraries and settings required 
to make the software work are needed. This makes 
for efficient, lightweight, self-contained systems and 
guarantees that software will always run the same, 
regardless of where it’s establish. 

 Docker: Docker is the world’s leading 

software container dais. Developers use Docker to 

remove  “works on my machine” problems when 

collaborating on code with co-workers. Operators use 

Docker to run and  control apps side-by-side in 

isolated containers to get better compute thickness. 

 Kubernetes: Kubernetes is an open-source 
platform for automating deployment, scaling, and 
operations of application containers across  collection 
of hosts, providing container-centric configuration. 

With Kubernetes consumer demand can be 
met and responded quickly and effectively. 
Applications deployments happen  rapidly and 
predictably. Applications can be scaled on the fly. 
New features can be seamlessly rolled out. Use of 
hardware can be optimized by using only the 
resources needed. 

Major Components of the system: 

1) Master Components: Essentially, master is the 
brain of cluster. Here, there is a core API server, 
which maintains RESTful web services for querying 
and defining the desired cluster and workload state. 
It's important to note that the control pane only 
accesses the master to initiate alter and not the nodes 
directly. 

Additionally, the master includes the scheduler, 
which works with the API server to schedule 
workloads in the form of pods on the actual minion 
nodes. These pods include the different containers 
that make up application stacks. By default, the basic 
Kubernetes scheduler spreads pods across the clusters 
and uses various  nodes for matching pod replicas. 
Kubernetes also allows specifying necessary 
resources for each container, so scheduling can be 
altered by these additional factors. 

2) Node (Minion) Components: A node is a 
worker machine in Kubernetes, previously known as 
a minion. A node may be a VM or physical machine, 
depending on the cluster. Each node has the services 
necessary to run pods and is controlled by the master 
components. The services on a node include Docker, 
kubelet and kube-proxy.  

Node status describes current status of 
HostIP, Node Phase and Node Condition. Node is 
created by cloud providers or from physical or virtual 
machines. Kubernetes only creates a representation 
and after creation, it will  examine  whether the node 
is valid or not. Node Controller manages Node 
objects, cluster-wide synchronization (create/delete 
representation), single node life-cycle management. 

 



International Journal of Engineering Trends and Technology (IJETT) – Volume 60 Number 3 - June 2018 

 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 188 

 

 

 

Kubernetes Core Architecture:  

 

 
Figure 1: Kubernetes Architecture 

 

Figure 1 shows a general block diagram 

describing the activities performed by this system 

with architecture in the forefront the entire 

architecture has been implemented in four modules 

which will be seen in high level design and low-level 

design in later chapters. 

II. CURRENT CONCERNS AND SOLUTIONS 

A. Concerns : 

 The existing FOSS IaaS systems target 
Enterprise as the primary user. This leaves a big hole 
where small/medium scale companies, universities, 
students can’t install, or maintain a cloud of their 
own. The amount of technical knowledge required to 
maintain any of the available cloud is still very high. 
This tool will fit in this hole where it will give the 
minimal features of any existing cloud service.  

 Till now a cloud network with physical 
access to the servers was not available, only 
AWS/Digital Ocean catered for building cloud and 
renting our servers from different parts of the world 
which would question the security of the network. 
Developers had to build apps /websites for every 
platform to deploy them, but now a cross platform 
container technique called Docker can also be 
spawned and any app/ images can be made to run on 
any platform. This would enable developers to build 
an app for one platform and deploy it on all the 
platform easily using Docker.  

 Raspberry Pi is a capable little device that 
authorize people of all ages to explore cloud 
computing, and to learn how to program in languages 
like Scratch and Python. It’s capable of doing 
everything we’d expect a desktop computer to do, 
from browsing the internet and playing high-
definition video, to making spreadsheets, word-
processing, and playing games.  

 Students who wants to learn cloud should be 
able to span cloud servers on demand for free in their 
premise. This would definitely make the life of a 
student much better by building pocket cloud on 
demand easily.  

 Students or Amateur Developers should be 
able to build their own cloud in their home using 
raspberry pi network and test how their app is 
working on cross platform deployed on the server. 
Developers should be able to deploy their apps on 
cloud easily without a deployment team, thereby 
reducing the cost of the project. 

B. Scope and Objective of this paper: 

 Build Virtual Machines and Containers to 
enable students to understand what it means and the 
difference between them. To use less expensive 
hardware for doing the same, minimizing the cost and 
make it a one-time investment. To help people 
understand about the “CLOUD” and Providing a way 
to help teaching and experiencing cloud. 

 A steady system would require some basic 
necessary features such as spawning Cloud instances 
(the basic VM(s) and containers that can be created 
on a cloud) and assigning elastic IP to the VM to get 
access from network and use Command line tools and 
web interface to manage the instances. A profile 
where User/Groups with quotas can be added or 
edited and a very simple object store. 

C. Solutions and Literature Review:  

 Zhan Ying, Sun Yong has inscribed in their 
work about Analyzing and discussing data pooling 
structure, online data pooling partition container 
model, structure model of enterprise Cloud Storage 
System, proposes the design plans of data control and 
Cloud Storage. 

 Dimitrios Kelaidonis, Angelos Rouskas, 
Vera Stavroulaki, Panagiotis Demestichas, Panagiotis 
Vlacheas has discussed in their paper about Federated  
architecture combined by distributed Edge Cloud-IoT 
platforms, that enables the semantic-based service 
combination and provisioning. The 5G technological 
features, such as low-latency, zero-losses, high-
bitrates are studied and initiate for the empowerment 
of the federation of the Edge Cloud-Io architectures. 

Donggang Cao, Peidong Liu, Wei Cui, 
Yehong Zhong, and Bo An has described Virtualizing 
the cluster environment for distributed application 
frame. Most applications can directly run in the 
virtual cluster environment without any modification, 
which is a great advantage. Based on lightweight 
containers, implement of a real system of ClaaS 
named Docklet to prove the feasibility of this service 
model. 
 

Víctor Medel , Omer Rana , José Ángel 
Bañares, Unai Arronategui has experimented on 
containers that are rapidly replacing Virtual Machines 
(VMs) as the compute instance of choice in cloud-



International Journal of Engineering Trends and Technology (IJETT) – Volume 60 Number 3 - June 2018 

 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 189 

based deployments. The significantly lower overhead 
of deploying containers (compared to VMs) has often 
been cited as one reason for this. Analyze the 
performance of Kubernetes system and develop a 
Reference net-based model of resource management 
within this system. Their model is characterized using  
actual  data from a Kubernetes deployment, and can 
be used as a basis to design scalable applications that 
make use of Kubernetes. 

 Sachchidanand Singh, Nirmala Singh has 
described that Container-based virtualization uses 
single kernel to run multiple instances on an 
operating system and virtualization layer runs as an 
application within the operating system. It is also 
called operating system virtualization and in this 
approach, the kernel of operating system runs on the 
hardware node with different isolated Visitor virtual 
machines (VMs) called containers. 

III. METHODOLOGY 

Module 1: Porting of a “libvirt” enabled Operating 

System to ARM based devices and setting up a static 

IP for all.  

Module 2: Installing Docker containers and 

managing it with Kubernetes by configuring the 

nodes to the master  

Module 3: Writing utilities (scripts) to automate the 

process and manage it in a controlled environment  

Module 4: Implementing a command line tool and a 

web interface for the client  

A raspberry Pi device has an ARM based 

architecture and it requires the use of “libvirt” library 

for virtualization and Containerization support. Only 

few Operating Systems support this library function 

and that should be ported to Raspberry Pi device. 

Since the use of IPs are regular all over the project, a 

static IP should be set up for each of the Raspberry Pi 

devices. 

Once the OS is installed and static IP is set, 

Docker should be installed to all the Raspberry 

Devices for deploying containers. After a cluster of 

Docker is created by connecting multiple Docker 

installed Raspberry Pi(s), Kubernetes is installed to 

manage the cluster. One of the Raspberry Pi devices 

is made a master node and the rest of them are made 

pods. 

After all the configurations are carried out 

and the nodes are connected and tested, the 

installation process is automated by pushing the 

commands used during the process to install and 

configure. Separate scripts and techniques are used to 

automate the process of adding and deleting the 

containers. 

There has to be an easy and effective way of 

managing the containers and Kubernetes. To achieve 

that a web GUI is required which acts as a dashboard 

to manage Kubernetes and all the pods. A CLI tool is 

also an easy and faster way of managing and using 

the services of the project. 

 

 
Figure 2: Flowchart of the implementation 

 

 

According to the flowchart given in figure 2 

above, initially an OS is installed on raspberry 

pi/laptop with libvirt support. A “libvirt” is a type of 

library which is supported only by some of the 

Operating Systems and is used for virtualization and 

containerization. A static IP is assigned to raspberry 

pi/laptop device and then SSH keys are deployed with 

which the 1st part of the project i.e. installation of 

cloud stack can be done remotely and on demand 

VMs can be spawned. If the VM is spawned then a 

success message is sent else an error message is sent. 

The latter part of the setup is installing Docker and 

building the Docker Engine. After a cluster of Docker 

engines are setup, a Kubernetes is required to manage 

these Docker clusters. Kubernetes sends commands 

to the Docker to deploy on demand Docker 

Containers with the given container application 

image. On failure, an error message is displayed else 

a success message is displayed and the containers are 

deployed. 

 

The installation and configuration of this 

dashboard are as below:  

$kubectl get pods --all-namespaces | grep dashboard 

To check if the dashboard is already installed or not.  



International Journal of Engineering Trends and Technology (IJETT) – Volume 60 Number 3 - June 2018 

 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 190 

$ kubectl create -f https://git.io/kube-dashboard 

To create the dashboard if it is missing  

$ kubectl proxy 

Easiest way to access the dashboard 

IV. RESULTS AND PROOF OF CONCEPT 

 
Table 1: Proof of Concept 

 

 
Figure 3: A Webpage Deployed on One of the Pods 

Using Kubernetes 

 
Figure 4: Kubernetes Workload 

 

The Kubernetes dashboard has some advanced 

features as follows: 

1. Shows the Workloads of Kubernetes – 

Deployments, 

ReplicaSets,Pods 

2.Shows the Memory usage and CPU usage of the 

setup 

3.Shows the number of Pods and its status  

4.Allows the creation of new container application 

5.User can edit the existing Pods 

6.Services and important details are furnished in 

dashboard 

7.Tokens and certificates used to keep the system 

secured can be monitored from the dashboard 

8. Admin access to control the Nodes and 

Namespaces 

V. CONCLUSION AND FUTURE WORK 

A.Conclusion 

 

Cloud computing is a vast field and requires 

a lot of technical knowledge to use it. The existing 

IAAS system’s limitations can be overcome by using 

a cheap device called raspberry pi which serves the 

purpose of a pocket cloud. This setup doesn’t require 

much of technical knowledge, yet allows students to 

work on cloud. This paper helps students and 

developers to create a cluster of Docker containers 

and manage it by Kubernetes easily through running 

scripts. Users get access to the fully equipped 

Kubernetes Web GUI Dashboard and will be able to 

perform various tasks/operations on the dashboard 

without worrying about ever changing commands. 

Users can also view real time data and a well-

presented data from the dashboard. The main problem 

users face is of setting up the system initially, which 

now can be achieved by running automated scripts. 

Kubernetes installation and Master-Slave node 

configuration is done through automated scripts. 

Since all the Raspberry pi devices has a maximum 

memory of 1GB, a cluster of Docker devices can be 

formed and a Kubernetes master controls all of them 

efficiently to allow the user to deploy container 

applications. There is also a load balancing technique 

to manage the traffic / requests and the user will be 

Descript

ion 

Input Expected Actual O/P Res

ult 

Test OS Port a 

supported 

OS 

Containeriza

tion Success  

Containeriz

ation 

Success 

Pass 

 

Test 

Network 

Access 

Static IP 

Configured 

SSH 

Succeeded 

with the 

given IP 

SSH 

succeeded 

with the 

given IP 

Pass 

Master 

Node 

Availabil

ity 

Kubernetes 

command 

to check 

master 

Live, up and 

Running 

Live, up 

and 

Running 

Pass 

Slave 

Nodes 

Availabil

ity 

Deploy a 

container 

Container 

Successfully 

deployed on 

Nodes 

Container 

Successfull

y deployed 

on Nodes 

Pass 

Test 

Replica 

pods 

Check the 

availability 

of pods 

Pods 

Running 

Pods 

Running 

Pass 

Dashboar

d 

Availabil

ity 

Check 

Web 

Dashboard  

Dashboard 

Running 

Dashboard 

Running 

Pass 

Operatio

ns 

Add a Pod Pod is 

Added 

Pod is 

Added 

Pass 



International Journal of Engineering Trends and Technology (IJETT) – Volume 60 Number 3 - June 2018 

 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 191 

served by any of the slave nodes connected to the 

system. The user will not know the exact node. In this 

project, some of the techniques to port “libvirt’ to one 

of the OS and automate the installation and 

configuration of Raspberry Pi Kubernetes clusters are 

used. This is limited to only containerization and 

doesn’t have a full-fledged virtualization technique 

involved, thereby saving the resources and using it 

efficiently. The user can perform operations from the 

CLI and look into its reflections in the Web GUI 

Dashboard. The user can add/delete pods, deploy 

application on pods, check the status and credentials 

of the containers. It is possible to deploy an entire OS 

into a container and run it, but it is recommended to 

use a virtualization technique instead of 

containerization technique. 

 

B.Future Work: 

This system currently supports 

containerization and deployment of applications and 

Operating Systems on containers. A virtualization 

solution for Raspberry Pi is to be developed which 

can give all the system resources to the Virtual 

Machine environment. There is no official support 

from VMware or Oracle Virtual Box for Raspberry Pi 

devices. But this can be achieved by implementing 

some virtualization techniques to the Raspberry Pi. 

Users should be able to select between 

Virtualization/Containerization before deployment of 

their apps. A single system which is a one stop 

solution of virtualization and containerization will be 

the future enhancements of this project. 

REFERENCES 
 

[1] Spencer Julian, Michael Shuey, Seth Cook “Containers in 
Research: Initial Experiences with Lightweight 
Infrastructure” - Proceedings of the XSEDE16 Conference on 
Diversity, Big Data, and Science at Scale – July 2016  

[2] ZHAN Ying, SUN Yong “Cloud Storage Management 
Technology” - 2009 Second International Conference on 
Information and Computing Science – November 2009  

[3] Dimitrios Kelaidonis, Angelos Rouskas, Vera Stavroulaki, 
Panagiotis Demestichas, Panagiotis Vlacheas “A Federated 
Edge -IoT Architecture Enabling semantic-based service 
provisioning in Future Internet” - University of Piraeus, 
Department of Digital Systems, Piraeus, Greece – June 2016 
Cloud  

[4] Donggang Cao, Peidong Liu, Wei Cui, Yehong Zhong, and 
Bo An “Cluster as a Service: A Resource Sharing Approach 
for Private Cloud” - TSINGHUA SCIENCE AND 
TECHNOLOGY, Volume 21, Number 6 - December 2016  

[5] Jheng-Jhe Sie, Shang-Chen Yang, Zih-Yun Hong, Chien-Kai 
Liu, Jen-Jee Chen, and Simon Cimin Li “Integrating Cloud 
Computing, Internet-of-Things (IoT), and Community to 
Support Long-Term Care and Lost Elderly Searching” - 2016 
International Computer Symposium – March 2016  

[6] (March 27th 2017) Raspberry Pi Documentation [Online]. 
Available: https://www.raspberrypi.org/documentation/  

[7] (March 27th 2017) Raspberry Pi Wikipedia [Online] 
Available: https://en.wikipedia.org/wiki/Raspberry_Pi  

[8] (March 27th 2017) What is Docker? [Online] Available: 
https://www.docker.com/what-docker  

[9] (March 27th 2017) Docker (Software) Wikipedia [Online] 
Available: https://en.wikipedia.org/wiki/Docker_(software)  

[10] (March 27th 2017) Cloud Computing Wikipedia [Online] 
Available: https://en.wikipedia.org/wiki/Cloud_computing  

 


