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Abstract  
           Recently, most of the people are using credit 

and debit cards for every purchase and payment. So 

the excessive usage of these cards attracts the illicit 

to implement different techniques to create fraudulent 

activities against these transactions. As a result, each 

year billions of dollars are lost due to ineffectiveness 

of the fraud detection system. Credit card 

transactions are highly imbalanced, since most of 

them are genuine and very few are fraudulent. These 

imbalance transactions lead to a huge challenge for 

the machine learning and data mining algorithms. A 

single algorithm cannot accelerate the performance 

of the model, so ensemble of classifiers is the 

approach to handle such an issue. In this paper, we 

first provide different approaches to detect frauds, the 

methods to evaluate the performance and the 

challenges faced by the fraud detection model. 

Second, we present a comprehensive review on the 

imbalanced problem, state of the art on ensembles 

techniques, assessment measures to evaluate the 

algorithm performance and finally, we perform 

different comparison tests among the ensemble-based 

methods.The ensemble-based methods are classified 

into different categories to handle imbalanced 

fraudulent transactions where each method is 

grouped based on their working principle. The 

comparison tests of different methods have shown 

that the performance of the detection model can be 

improved by integrating random undersampling 

approaches with bagging or boosting methods.  

Additionally, the results justifies that ensemble-based 

methods are worthwhile in integrating the pre-

processing techniques before learning the classifier.   
 

Keywords – Bagging, Boosting, Cost-sensitive 

learning, Ensembles, Imbalance data set, Credit card 

fraud. 
 

I.  INTRODUCTION 
 

Financial fraud is one of the major problems in the 

financial industries and government organizations. 

Most of the financial transactions take place either 

through online or offline mode and this accelerates 

the fraudulent activities through credit card 

transactions. Credit card fraud may take place in 

different ways, like stolen card fraud, Card not 

Present (CNP) fraud and application fraud [1]. In 

stolen card fraud, the fraudster tries to misuse another  

 

person‟s card without the owner‟s knowledge. In 

CNP fraud, fraudster needs only the card information 

to commit fraud. Through application fraud, fraudster 

tries to receive a card by giving false personal 

information to the bank.  

Machine learning (ML) techniques are the suitable 

approaches to detect the credit card fraudulent 

transactions [3]. To improve the performance of the 

Fraud Detection System (FDS), it must satisfy certain 

characteristics. First, it must not block too many 

genuine transactions, second, it must deal with class 

imbalance problem and finally, it must be an 

automated system to detect fraudulent patterns. Credit 

card fraud detection has many challenges, some of 

these are: imbalanced dataset, publicly unavailability 

of real dataset and dynamic behaviour of the 

fraudsters. In this paper, we survey on the imbalanced 

nature of the credit card transactions and state-of-the-

art solutions discussed to solve the issues. A data set 

is said to be imbalanced if the number of fraudulent 

transactions are much less than legitimate 

transactions. The imbalanced data stream 

significantly reduces the performances of most of the 

machine learning algorithms. When the classifier 

deals with the imbalanced data sets, it achieves high 

predictive accuracy for the majority class instances, 

while predict low accuracy for the minority class 

instances. Another important issue with the 

imbalanced data set is the performance evaluation 

metrics. Normally, the performance of the machine 

algorithms is measured using metrics like, overall 

predictive accuracy and error rate. But in case of 

imbalanced data sets these two parameters are 

inappropriate, since the prior probabilities of the 

majority and minority class instances are unequally 

distributed [9]. Many techniques have been proposed 

to address imbalanced class issue. These techniques 

can be categorized into three groups. The algorithm 

level approaches modify the existing algorithms, to 

correctly classify the minority (or positive) samples 

[10]-[12]. Data level techniques are pre-processing 

steps where the data samples are rebalanced to reduce 

the effects of imbalanced class distribution [13]-[15]. 

Finally, cost sensitive methods combine both the 

algorithm and data level approaches to reduce the 

misclassification cost during learning phase [16], 

[17]. An ensemble of classifiers is another approach 

to solve the imbalanced problems [28], [29]. 
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Ensembles are proposed to increase the prediction 

level of a single classifier by training multiple 

classifiers on the same data set and integrating each 

individual outputs to a single class level. While 

integrating different classifiers, we aim to maintain 

their consistencies with the training data inorder to 

achieve better accuracy. In this paper, we propose an 

ensemble with varying data, where the classifiers are 

trained with different data set.   

This remaining part of the paper is organized as 

follows. In Section II, we presents the related work, 

which includes descriptions about credit card FDS, 

major challenges in the detection model, different 

solutions to address this problem and different 

sampling methods. In Section III, we review the state 

of the art on ensemble-based learning to handle 

imbalanced distribution. Different assessment metrics 

for imbalanced distribution are discussed in Section 

IV. In Section V, we present the experimental 

observation for different ensemble-based learning 

algorithms along with their corresponding parameters 

and statistical tests to evaluate the algorithms. Results 

and experimental analysis of the different algorithms 

are discussed in Section VI. Finally, a conclusion and 

future work is drawn in Section VII.   

II. RELATED WORKS 

A.  Credit Card Fraud Detection 

Fraud detection is to identify that the incoming 

transaction belongs to fraudulent or genuine category 

by using a set of trained credit card transactions [4]. 

An efficient FDS should be accurate and cost-

effective, i.e. the amount of cost needed to check the 

transaction behaviour should not be more than the 

loss due to fraud [2]. ML techniques [3] can more 

efficiently predict the incoming transactions as 

genuine or fraudulent. An automated detection model 

implements Expert Driven or Data Driven approaches 

to analyse the credit card transactions.  

The Expert Driven approach works by following 

the feedbacks of the fraud investigators. Using their 

feedbacks the rules are defined and the model predicts 

the nature of the incoming transactions by following 

the rules. Expert Driven approaches are easier to 

develop and understand but they are applicable to a 

specific domain. 

The FDS implementing the Data Driven 

approaches can detect the fraudulent patterns using 

supervised or unsupervised ML techniques. The 

advantages of such systems are: it can detect the 

fraudulent patterns by using all the features, can deal 

with large data stream and can predict the frauds 

implementing new strategies. However, the 

disadvantages are the system needs enough training 

data and in some cases the investigators may not 

understand the reason of an alert.   

 

B. Performance Measure for Fraud Detection 

        The performance of the fraud detection model 

can be evaluated by using area under the ROC curve 

(AUC) metrics [5]. The value of AUC metrics can be 

explained in the form of probability that the classifier 

assigns higher ranks to fraudulent transactions than 

legitimate transactions [6]. Average Precision (AP) is 

another ranking approach mostly implemented in 

fraud detection model [106]. Along with these 

measures, cost-based measures [7], [8] also frequently 

used in FDS. Cost-based measures represent the 

amount of monetary loss due to frauds in the form of 

cost matrix. But in the cost matrix the amount of 

maximum or minimum loss for a particular problem 

may change over time [18]. To handle this issue, a 

normalised cost [19] is proposed to access the 

monetary loss.  

C. Major Challenges in FDS 

The challenges to be considered while designing a 

fraud detection model are: i) Class Imbalance, ii) 

Concept Drift, iii) Small Sample Size, iv) Class 

Overlapping and v) Small Disjuncts. 

 Class Imbalance: Credit card transactions 

data are highly imbalanced, since the numbers of 

fraudulent transactions are normally less than 10% 

of the total transactions [20].  Learning from 

imbalanced data sets is a major issue in case of 

supervised learning. The degree of class imbalance 

distribution reduces the performance of the 

classification. Classifier provides highly imbalanced 

degree of accuracy i.e. it achieves nearly 100% 

accuracy for classifying the majority class samples 

and for minority class the accuracy reaches 0-10% 

for instance [27]. So, a traditional machine learning 

algorithm have a bias towards the majority class 

instances because the rules correctly predict the 

majority instances, while ignoring the minority class 

instances and treating those data stream as noise. 

Two main techniques to handle class imbalance 

problems are: sampling methods and cost-based 

methods [21].  

Sampling methods rebalance the class distribution in 

the training sample before implementing the 

classification. Sampling methods follows two 

rebalance approaches; either undersamples the 

majority class instances in the training set, or 

oversamples the training samples by duplicating the 

minority class instances [22]. SMOTE [14] is an 

oversampling approach which generates synthetic 

training samples from minority class by 

interpolation. 

Cost-based methods assign different costs for 

misclassification and more cost is assigned to the 

misclassification of minority class [18]. In case of 

credit card FDS, the misclassification cost is 

proportional to the transaction amount [7], [8] and 

assigns larger cost to false negative cases (i.e. the 

classifier may generate false alarm but never take 

risk to misclassify a fraud as genuine. 

In such imbalanced problem domains the classifier 

should provide high degree of accuracy for the 

minority class samples without neglecting the 

accuracy of the majority class samples. The 
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traditional evaluation metrics like the overall 

accuracy and the error rate does not provide 

necessary information due to imbalanced class 

distribution. Therefore, the performance of the 

classifiers in such imbalanced data sets can be 

evaluated using the assessment metrics like Receiver 

Operating Characteristics (ROC) curve, precision 

recall curves and cost curves. In Section 4 of this 

paper has discussed in detail about this evaluation 

metrics.   

 Concept Drift: In FDS, the behaviour of the 

legitimate users as well as fraudster‟s changes with 

time and this principle is known as concept drift 

[40]. In financial transactions, the card holder 

behaviour can be analysed from two features i.e. 

transaction amount and the frequency of transaction. 

These two features does not remain fixed for a 

particular card holder, it varies with time due to the 

users life style and the availability of resources. 

Concept drift phenomenon mainly refers to 

supervised learning scheme, where the relation 

between the input vectors and targeted output varies 

with time [40]. So, the fraud detection system can 

handle concept drift issues by using adaptive 

learning algorithms. These algorithms can be used to 

update the detection model inorder to handle new 

fraudulent techniques [40]. 

When the data sets are characterized by both concept 

drift and imbalanced class distribution, then it can be 

handle by integrating ensemble approaches and 

resampling techniques [23], [24]. Another solution 

to overcome such problem is oversampling the 

minority class instances with time [24] and 

undersampling majority class. 

 Small sample size: Due to inadequate number 

of fraudulent samples, it is difficult to detect pattern 

uniformity in minority class samples. In the paper 

[33], it was shown that the misclassification rate in 

imbalanced class distribution can be reduced if the 

number of minority class instances is representative 

i.e. keeping imbalanced ratio fixed. So, the patterns 

of minority class (or positive) can be learned in a 

better way despite theimbalance class distribution.  

But in reality the data set the ratio does not remain 

fixed. The work of [34] shown that by increasing the 

training sample size, reduces the misclassification 

rate of the imbalance class distribution. 

 Class overlapping or class separability: Class 

overlapping is one of the major    problems in 

imbalance class distribution. It is also known as 

class separability and it corresponds to the degree of 

separability between the classes of the data set [35]. 

So the classifier finds difficult to separate the 

minority class instances from the majority class. In 

case of financial transactions, overlapping of data 

means when the model treated the fraudulent 

transaction as genuine and vice-versa. This is 

because the fraudsters are implementing new 

approaches which are very close to genuine 

approach, so the detection model treats the 

fraudulent transaction as genuine [80]. Therefore, a 

fraud detection model to handle overlapping data 

issues must implement a suitable classifier and 

proper methods as in [36]. From the experimental 

results of [25], it is concluded that the class 

imbalance distribution can be handled, but when the 

classes are highly overlapped then the number of 

correctly classified minority class samples reduces.  

 

D. Tackling Imbalanced Data sets 

To deal with the imbalanced data sets, a large 

number of techniques have been proposed. As 

mentioned in the introduction, these techniques can 

be categorized into three groups: Algorithm level 

approaches, Data level approaches and Cost-sensitive 

learning approaches.     

 Algorithm level approach: These approaches 

are used to modify the existing machine learning 

algorithms and biasing the learning phase towards the 

minority class instances [41]-[43]. This method 

requires a good understanding of the classifiers and 

identifies the reasons for its failure in mining the 

imbalanced data distributions. The standard way to 

handle the imbalance class distribution problem is to 

select an appropriate inductive bias. For example, we 

can handle such situations in decision trees algorithm 

either by adjusting the probability estimation at the 

leaf nodes [10], or by developing new pruning 

techniques [11]. Similarly for SVMs, to address this 

problem we can assign different penalty for different 

classes [42], or modify the class boundary according 

to the kernel function [64]. For association rule 

mining, different minimum supports are assigned to 

different classes due to skewed data set [41].   

 Data level approach: It is a pre-processing 

approach which rebalances the data set before 

classifying the instances. In FDS, most of the 

researchers proposed data level balancing techniques 

by implementing oversampling and undersampling 

approaches[81],[91]. Balancing can be done either by 

replicating minority class instances (oversampling) or 

by removing the majority class instances 

(undersampling). But randomly using such 

resampling techniques may leads to removal of useful 

samples or it may generate irrelevant new samples. 

Hence, new advanced techniques were proposed in 

the research to keep the ratio of classes intact and/ or 

generate new samples according to the given class 

distribution [45].    

 Costsensitive learning approach: In cost 

sensitive learning scheme, when a classifier 

misclassifies an instance then as a penalty different 

costs are assigned. These costs are represented in the 

form of a matrix, called cost matrix C [44]. Let the 

entry C (i, j) in the matrix denotes the cost of 

predicting an instance of class „i‟ as class ‟j‟. 

Similarly, it denotes C (+,-) when the classifier 

predicts a fraud transactions as genuine and C (-, +) 

for the reverse case. But in case FDS, the model must 

give more emphasis on fraudulent instances as 
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compared to genuine. That means, it must assigns 

higher costs for misclassifying a fraudulent instances 

(False Negative) than genuine instances (False 

Positive), i.e. C (+, -) > C (-, +) and for correct 

predictions zero cost is assigned, i.e. C ( +, +) = C (-, 

-) = 0. But in real-world problems it is very difficult 

to assign the actual values in the cost matrix. 
 

E. Data Preprocessing Methods 

In some of the papers it has been shown that 

rebalancing the class distribution at the processing 

step is usually a constructiveapproach [13], [46]. 

These resampling techniques rebalance the data set 

before the implementation of the classifier 

algorithms. Resampling techniques can be 

implemented in three levels.  In undersampling 

approaches a new subset of data samples are 

generated by removing majority class instances. In 

oversampling methods a superset of the original data 

set is created by replicating some instances of the 

minority class and finally, hybrid resampling 

approaches which combines both the above sampling 

methods. There are several approaches existing under 

these categories, but we will focus only on the 

methods that can be implemented in combination 

with ensemble-based classifiers. 

 Random undersampling: It is a resampling 

approach the class distributions are balanced by 

randomly removing the majority class (or genuine) 

instances. But one of the major disadvantages of this 

approach is that we may eliminate the useful 

information which could be used in the next step. 

 Random oversampling: Similarly, in this 

approach the class distribution are balanced by 

randomly replicating the minority class instances, but 

it may leads to overfitting [47], since it may generate 

the duplicateminority class instances. 

 Synthetic Minority Oversampling Technique 

(SMOTE): It is another oversampling approach, 

which creates new minority class instances and 

adding those samples near the instances of the same 

class. In FDS, SMOTE is anotherbetter approach to 

handle imbalanced class distribution [5]. 

 Modified Synthetic Minority Oversampling 

Technique (MSMOTE) [48]: In this modified version 

of SMOTE, the algorithm divides the minority class 

samples into three groups, safe, border and latent 

noise samples. The data samples are grouped based 

on the distances among all samples. In this case, 

when a new sample is generated, then the nearest 

neighbour is selected from the same group. For safe 

data samples, the algorithm randomly selects an 

instance from the K-Nearest Neighbors (KNN), for 

border instances it only selects the nearest neighbour 

and for latent noise data samples, it does not select 

any instances from the data set [49].        

 Selective Preprocessing of Imbalanced Data 

(SPIDER): In this approach, the original data set is 

created by integrating the oversampled minority 

(fraudulent) class instances with the correctly 

classified majority (genuine) class instances [50]. It 

works in two phases, first identifies the instances that 

are misclassified using KNN algorithm.In the second 

phase, it rebalances the data set by using three 

different options like, weak, relabel or strong [49]. If 

it comes under weak category, it rebalances the data 

set by adding morerare class instances; for relabel 

category, it increases the rare class instances as well 

as relabels the majority class instances; and finally for 

strong category, rebalances is done by adding more 

number of minority class (or fraudulent) instances. 
  

III. STATE OF THE ART SOLUTION 

TECHNIQUES TO HANDLE IMBALANCED 

DATA SETS 
 

In this section, the researchers have discussed a set 

of classical learning algorithms to construct sets of 

classifier with the modality of classifiers properly 

complement each other. Then a new taxonomy has 

been utilized that is based on ensemble methods 

keeping in mind to handle imbalanced data sets. So, 

for structure representation, we have divided the 

explanation in two segments as: 

A. Descriptions of ensemble of classifiers with 

different techniques. 

B. Different approachesto handle class 

imbalance problem with ensemble of 

classifiers. 

A. Descriptions of ensemble of classifiers with 

different techniques 

Actually, the primary intension of ensemble 

methodology is to increase the performance of a 

classifier by incorporating a set of classifiers and 

combining their predictions to procure a new 

classifier which may able to outperform all of them. 

Here, the main objective is to generate multiple 

classifiers from the original data and for test cases 

their predictions can be integrated to generate a single 

class level. The main objective of combining several 

classifiers in ensemble methodology is to improve the 

overall predictions, since each of the classifiers are 

trained on different parts of the input instances, so the 

misclassified instances may not be same for all [97]. 

As per the researchers work specified in [28], [51] 

and, [52], ensemble-based classifiers means 

combining similar types of classifiers and that can be 

represented as a multiple classifier systems. But here, 

the focus is laid on ensembles whose classifiers are 

formed by modifying the original data-set. 

In [53] and [54], the researchers studied on 

different classifiers to develop an ensemble-based 

model using the concepts of bias-variance 

decomposition and related ambiguity decomposition 

[55].Actually, a bias can be defined as a measure 

which can correctly generalize a test instances, 

similarly the variance can be defined as a measure of 

the extent to which the classifier‟s prediction is 

sensitive to the trained data. Since the variance causes 

overfitting, so the   performance of the ensembles can 
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be improved by reducing the variance of the 

classifiers. In contrast, ambiguity decomposition 

shows that, by takingthe combination of several 

classifier predictions yields better performance on an 

average, than the method of selecting any one of the 

classifiers at random. However, these concepts are 

mainly applicable to regression problems because the 

output of such problems is real-valued and the mean 

squared error is computed as the loss function. But as 

per the researchers work specified in [56] and [57], 

these concepts could not find its strong foot hold. 

Also different researchers provide different 

assumptions as specified in [58], [59] for which no 

consensus arises for generalized loss functions [60]. 

In [61], [62], many researchers have shown that to 

form an ensemble, diversity among classifiers is an 

important criteria and another important functionality 

is that the base classifiers should be weak learners. 

Actually a learning classifier is termed as weak, when 

a slight modification in the data set reflects a large 

change in the induced model. Due to this reason most 

of the commonly used base classifiers implements 

tree induction algorithms. 

In a weak learning algorithm, for construction of 

an ensemble different types of techniques can be 

implemented. The most commonly used ensemble 

learning methods are AdaBoost [30], [31] and 

Bagging [32] and their implementations have 

improved significantly in several classification 

problems [63]. 

 Bagging: Breiman [32] design an ensemble 

model using the concept of bootstrap aggregation. 

The model consists of several classifiers which gets 

trained by randomly taking the instances (with 

replacement) from the original trained data set, i.e. 

the main objective is to maintain the original data 

sample size intact. Since the classifiers get trained 

through different data-sets, as a result diversity is 

obtained. When a test sample is provided to each 

classifier, the majority or weighted vote is used to 

predict the class label. The pseudo code of Bagging is 

depicted in Fig. 1. 

 
Fig 1: Bagging Algorithm 

The modified Bagging techniques called pasting 

small votes which is specially designed to handle 

large data sets [67]. Due to smaller memory capacity 

the large data sets are partitioned into smaller data 

samples and each sample are provided to the 

classifiers as a training instance.It can be 

implemented in two different ways i.e. Rvotes which 

randomly generates the data subsets and Ivotes which 

creates consecutive data-sets based on the importance 

of the instances. The samples that show improvement 

in diversity are treated as important samples. The data 

set must consist of easy and difficult instances. The 

instances that are misclassified by the ensemble 

classifier are treated as difficult and these are detected 

by out-of-bag classifiers [32]. For better performance 

of the algorithm, the model includes the misclassified 

(or difficult) instances to the consecutivedata subset, 

as a result the easy instances gets lower priority to be 

included in the subset. 

 

 Boosting: The researcher Schapire [32] has 

introduced Boosting in 1940, which is also known as 

ARCing, adaptive resampling and combining. In his 

work, he has proved that that a weak learner can be 

converted into a strong learner by using probably 

approximately correct (PAC) learning method. 

AdaBoost is one of the significant algorithm comes 

under this category, which is regarded as one of top 

ten data mining algorithms as discussed in [68]. The 

researchers have shown in [69] that apart from 

variance it reduces bias. In [70], the researchers have 

also shown that it supports SVM (Support Vector 

Machine) which helps to boost the margins. The 

functionality of AdaBoost is that it uses the entire 

data-set to train each classifier in a serial manner. The 

main objective of the algorithm is to correctly classify 

the misclassified instances. So, after each round the 

algorithm increases the priority of those misclassified 

instances inorder to correctly classify them in the next 

round.It gives more effort to the samples that are 

difficult to classify and the effort is measured in terms 

of weight. Initially equal weights are assigned to all 

the samples and subsequently the weights of 

misclassified instances increases, as a result the 

weights of correctly classified instances deceases. 

The AdaBoost weighting technique is same as 

resampling the data space using oversampling and 

undersampling approaches. Hence, it implements 

data-level approaches, which are very effective 

techniques to solve the class imbalance problem. In 

imbalanced data set, the traditional algorithms 

perform poorly on fraudulent instances due to bias 

error. So, AdaBoost has the ability to reduce the 

learning bias in class imbalance problem domains. 

The pseudocode of AdaBoost Algorithm is depicted 

in Fig. 2 
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Fig 2: Pseudocode for AdaBoost Algorithm 

AdaBoost technique is further classified into two 

categories: AdaBoost.M1 and AdaBoost.M2 [31]. 

The AdaBoost M1 classification algorithm designed 

to handle multiclass imbalance problem domains 

using different weight changing mechanism.  The 

AdaBoost M2 algorithm is also has the ablility to 

handle multiclass imbalance problems using base 

classifiers‟ confidence rates. Neither of these two 

algorithms can individually handle imbalance 

problems, rather they combinedly focus to correctly 

identify the majority class instances.   

B.Different approaches to handle class imbalance 

problem with ensemble of classifiers 

Recently, ensemble of classifiers has been 

proposed as one of the appropriate solution to the 

class imbalance problem which is discussed by the 

researchers in [49], [65] and [66]. We categorized the 

ensemble learning methods into two approaches; cost-

sensitive boosting and data preprocessed ensembles. 

Cost-sensitive boosting techniques are equivalent to 

cost-sensitive learning, where costs are associated to 

boosting algorithms. On the other side, we kept the 

algorithms into one category that have a common 

characteristic, where all of them embed data 

preprocessing technique in ensemble learning 

methods. Therefore, in the second category boosting 

and bagging-based ensembles and hybrid ensembles 

are incorporated. The entire classifications are 

depicted in Fig. 3. 

 Cost-sensitive Boosting: Cost-sensitive 

boosting algorithm implements the learning technique 

of AdaBoost by including the cost items into weight 

update formula (line 10 of Algorithm 2). AdaBoost is 

an accuracy-oriented algorithm, in case of imbalance 

class problems the learning (weighting) strategy is 

bias towards the majority class instances, since the 

entire accuracy of the algorithm depends upon it. In 

three different ways we can include the cost items 

into the weight update formula of AdaBoost. Based 

on these weight update formula, the cost-sensitive 

boosting algorithms are classified into AdaCost [79], 

AdaC1, AdaC2 and AdaC3 [71]. 

i.AdaCost: In this algorithm, weight update is done by 

adding a cost adjustment function . If the instance is 

misclassified, then this function increase its weight 

more for an instance with a higher cost factor 

otherwise the weight is decreased. Assume Ci be the 

cost of misclassifying an instance i, so the cost 

function for positive class   and 

for negative class . The weight 

function and  are recomputed by the following 

equations: 

 (1) 

(2) 

ii. AdaC1: In this case, the costs (Ci) are 

embedded into the exponenet part of 

the equation:  

          
(3) 

The update weight parameter αtis reevaluated as : 

(4) 

where,   

iii. AdaC2: In this algorithm, the costs also 

embedded with the weight update formula. But in this 

case, the costs are associated outside the exponent 

part in the following equation: 

           (5) 

αt is recomputed as: 

               (6) 

iv. AdaC3: In this algorithm, the weight 

updation formula is changed by associating costs 

both inside and outside the exponent part of the 

equation: 

           (7) 

Similarly, αt is recomputed as: 

(8) 
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 Boosting-based Ensembles: The algorithms that 

embed techniques for data preprocessing in the 

boosting methods are included in this family. The 

algorithms such as SMOTEBoost [82], 

MSMOTBoost [48], RUSBoost [65] and 

DataBoost-IM [83] are included in this family. 

i. SMOTEBoost and MSMOTBoost: Here, both the 

algorithms incorporate synthetic instances by 

utilizing SMOTE and MSMOTE data 

preprocessing techniques respectively and it is 

found that the weights of the new instances are 

proportional to the total number of instances in the 

new data-set. As a result, their weights always 

remains the same for each iterations and for all 

new data instances. At the other side, original 

data-set‟s instances weights are made normalized 

in such a manner so that they form a distribution 

with the new instances. After training the 

classifier, the weights of the original data-sets are 

updated and again sampling techniques are 

implemented to update the weights. As a result, 

the training data gets more diversity and which 

helps the ensemble learning classifier to 

outperforms. 

ii. RUSBoost: Its working principle is similar to 

SMOTEBoost. The difference is that it randomly 

eliminates the majority class instances by 

implementing the under sampling approaches in 

each iteration. So, here, new weights to the 

instances are not required to be assigned. It works 

by simply normalizing the weights of the 

remaining instances in the new data-set with 

respect to the summation of weights. The 

remaining procedure is equivalent to 

SMOTEBoost. 

iii. DataBoost-IM: It is a combination of 

AdaBoost.M1 algorithm and data synthesis 

algorithm. In this algorithm the difficult samples 

are identified as seeds and then it performs 

rebalancing procedure for both the classes. 

 Bagging-based Ensembles: Bagging ensembles 

are widely applied to many class imbalance 

problems because of its simplicity and 

generalization ability. Actually, the specialty of a 

bagging algorithm is that it does not require 

updating the weights. Hence, in the algorithm, it 

neither requires a weight update formula nor any 

modifications in the computation of the 

algorithm. In this method, the focus is based on 

how effectively collect each bootstrap replica as 

shown in Step 2 of Algorithm 1 (Fig.1), i.e. to 

handle the class imbalance problem the algorithm 

must obtain a good classifier in each iteration 

without neglecting the significance of the 

diversity The four main algorithms in this family 

are OverBagging [72], UnderBagging [84], 

UnderOverBagging [72], and IIVotes [85]. 

i. OverBagging: To handle the class imbalance 

problems, in each bag, the classes of different 

instances are required to be considered when they 

are randomly drawn from the original data-set. 

Hence, instead of carry out random sampling for 

the whole data-set, before training each classifier 

an oversampling process can be carried out 

which is known as OverBagging and it can be 

done in two ways. In the first case, the new 

bootstrap can include all majority class instances 

and in the second case, resample them so that 

diversity can be increased. As it is proposed in 

[72], by utilizing SMOTE Bagging preprocessing 

algorithm all minority class instances can be 

taken care of. 

ii. UnderBagging: In this approach, undersampling 

is   used instead of oversampling which can be 

also it can be functioned in two ways i.e.  i) it can 

be applied to a majority class and ii) in order to 

obtain a priori more diverse ensembles,  a 

resampling with replacement of the minority 

class can also be utilized. UnderBagging is also 

used with altered names where the the same 

functional structure can be maintained which are 

proposed by researchers as Asymmetric Bagging 

in [73] and QuasBagging[74].  The researchers 

proposed roughly-balanced Bagging in [75] that 

possesses same approach as UnderBagging, but it 

does not utilize a totally balanced bag concept. 

Another approach proposed by researchers which 

is known as Partitioning in [76], [77]. It is also 

proposed as Bagging Ensemble Variation [78]) 

where, the instances of the majority classes are 

separated into disjoint data-sets and individual 

classifier is get trained with any of the bootstraps 

used. 

iii.UnderOverBagging: It is similar to 

SMOTEBagging approach which is used to 

create each bag. Here, both oversampling and 

undersampling approaches are utilized. The first 

classifiers are get trained by using less number of 

instances with respect to the last instances so that 

diversity can be kept intact. 

iv. Imbalanced IVotes (IIvotes): It integrates both 

the SPIDER data preprocessing technique along 

with IVotes. The advantage of this method is that 

the number  of bags are not required to define, 

because when the out-of-bag error estimation not 

decreases, automatically the algorithm is stopped. 
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 Hybrid Ensembles: As compared to other three 

category algorithms, these algorithms carry out two 

fold ensemble learning techniques, where boosting 

and bagging techniques are combined by utilizing 

through a preprocessing technique. The researchers 

proposed both EasyEnsemble and BalanceCascade 

algorithms as discussed  in [66]. 

i. EasyEnsemble: In this method, after each 

AdaBoost iteration, the instances from the 

original data-set is kept intact without carrying 

out any operation, to train all  the classifiers  in 

parallel. The other case is that, this approach can 

be represented as UnderBagging techniqueif the 

base learner utilizes AdaBoost techniques. If the 

number of classifiers are kept fixed, then it will 

train less bags as compared to UnderBagging 

technique, where more classifiers will get chance 

to utilize each single bag. 

ii. Balance Cascade: As this approach performs in a 

supervised manner, the classifiers are required to 

be sequentially trained. So, in each bagging 

iteration, after learning the AdaBoost classifier, 

the majority class examples which are correctly 

classified with a  higher confidence factor by the 

current trained classifiers are then removed from 

the data-set, in turn they are not considered for  

further iterations. 

IV. ASSESSMENT METRICS FOR 

IMBALANCED LEARNING 

 

    To assess the effectiveness of the imbalanced 

learning algorithms standardized evaluation measures 

must be used. In these problem domains, the 

performance of the classifier to identify minority 

class (or fraud) instances is usually very poor. To 

improve the performance, the learning objective must 

be: (1) balance the class distribution; and/or (2) 

improve accuracy for fraud instances. In this section, 

we present a brief description about major assessment 

metrics for imbalanced learning algorithms.  

Table1. Confusion Matrix 

 Predicted as 

Positive 

Predicted as 

Negative 

Actually 

Positive 

True Positive (TP) False Negative 

(FN) 

Actually 

Negative 

False Positive 

(FP) 

True Negative 

(TN) 

 

A. Singular Assessment Metrics 

         In classification problems, accuracy and error 

rate are very often used to measure the performance 

of the algorithms. A confusion matrix (Table 1.) 

gives information about actual and predicted results 

of a classifier. The information‟s in the confusion 

matrix are defined as: 

 

Following the confusion matrix information‟s, 

accuracy and error rate are defined as: 

 

                       (8) 

 

Error Rate=1 Accuracy=            (9) 

 

But if the data sets are highly imbalanced, then 

accuracy and error rate are the not the right choice to 

measuring the performance of classifiers. Instead of 

these two metrics, other frequently used evaluation 

metrics to access imbalanced learning performance 

are precision, recall, F-measure and G-mean. These 

metrics are defined as: 

 

                      (10) 

 

                          (11)       
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                 (12) 

Where, β is a parameter to adjust the relative 

importance of precision versus recall (usually,   

) 

 

                          (13) 

 

                     (14)                  

Intuitively, precision is used to evaluatethe exactness 

(i.e., out of the retrieved positive instances, how 

many are really positive), whereas recall is used to 

evaluate the completeness (i.e. how many positive 

samples are predicted correctly). The two metrics 

behave just like accuracy and error, but both 

precision and recall are not sensitive to imbalance 

class distribution. From the above formulas it shows 

that precision (Eq.10.) is related to class distributions, 

while recall (Eq. 11.) is not. However, proper use of 

these two metrics helps to evaluate the performance 

of the classifier in imbalanced learning phase. F-

measure metric (Eq. 12) is another approach to 

measure the performance of an algorithm by taking 

fraction of the weighted importance on recall or 

precision as determined by the β parameter. As a 

result, F-measure is a more effective metric to 

measure performance of a classifier as compared to 

accuracy metric, however it still remain sensitive to 

data distributions. G-mean metric (Eq. 14) is another 

way to measure the degree of inductive bias by taking 

the ratio positive accuracy and negative accuracy. 

Though F-Measure and G-Mean provides better 

results than accuracy, but still these two measures 

can‟t be used to compare the performance of different 

classifiers on same data set).  

 

B. Receiver Operating Characteristics (ROC) 

Curves: 

    In order to avoid the above issues, ROC curve 

(Fig.4.) is another approach [86],[87] to evaluate the 

performance of classifiers by using the evaluation 

metrics, like, True Positive rate (TP rate) and False 

Positive rate (FP rate). The ROC graph is plotted based 

on TP rate and FP rate, and any point in the graph 

represents the performance of a classifier on a given 

data set. The ROC curve represents a graphical 

representation of the trade-offs between benefits 

(TPrate) and costs (FPrate) of a classification. The 

performance of the classifier is optimal when TPrate= 

1(maximum) and FPrate=0 (minimum) (i.e. point A in 

the Fig.4). So the classifier performs well, if the point 

in the ROC space remains closer to point A. If a 

classifier whose corresponding ROC point lies on the 

diagonal (such as point E), such a classifier is known 

as random classifier which randomly guess the class 

labels for each unknown instance. The classifier that 

outputs a continuous numeric value can be 

represented by a set of points in ROC space and these 

points can be graphically represented by a ROC 

curve, as the curve L1 and L2 in Fig.4. To assess the 

performance of different classifiers, the area under 

the ROC curve (AUC) is used as an evaluation 

metrics [86], [87]. So the ROC curve that covers 

maximum AUC generates better performance as 

compared to the classifier associated with smaller 

AUC. So, in our example L2 provides better average 

performance than L1. The AUC measure is computed 

by the following formula: 

 

                               (7) 

 
Fig 4: ROC curve representation 

 

C. Precision-Recall (PR) Curves 

Although ROC curves is a better approach to 

visualize the performance of a classifier, but it also 

have some limitations. It is observed that in case of 

highly imbalanced fraudulent transactions, the ROC 

curve provides an excessively optimistic 

representation of an algorithm‟s performance. To 

overcome such limitations, PR curve is a better 

approach to measure the performance of an 

algorithm‟s [88]. Using the information‟s of 

confusion matrix and the equations of precision and 

recall, the PR curve can be plotted by taking 

precision rate and recall rate. As compared to ROC 

curve, PR curve provides more information related to 

performance assessment of an algorithm under highly 

imbalanced data distribution. So, PR curves are 

mostly proposed in most of the recent research work 

for performance evaluations and comparisons of 

different classifiers [88], [89], and [90]. 

V. EXPERIMENTAL OBSERVATION 

Here, we briefly discuss the different observations 

are made by different algorithms followed by a 

statistical analysis tests to show a proper comparison 

among the algorithms. 

 

A. Algorithms and Parameters 

         We propose C4.5 decision tree generating 

algorithm to act as a baseline classifier in all 

ensembles [92]. Most of the ensembles 

methodologies discussed in [49] were used in 
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combination with C4.5. To deal with the imbalanced 

class distribution, C4.5 algorithm is most widely used 

[94] and has been included as the baseline classifier 

[68]. The configuration parameters for C4.5 are 

shown in Table-2. The classification tree algorithm, 

e.g. Hellinger distance tree [94] can be used to deal 

with the imbalanced fraud transactions. But, the tree 

reduces the performance due to the utilization of 

sampling techniques. To overcome such issues, 

SMOTE preprocessing techniques can be used to 

rebalance the data before the decision trees undergoes 

learning phase (see Section II-E).  

Table 2. Parameters Specification for C4.5 

Parameters Value 

Prune True 

Confidence level 0.25 

Basic  number of item-

sets/leaf 

2 

Confidence Laplace 

Smoothing  

 

Ensemble Learning techniques are more robust than 

C4.5 in the imbalanced data set. These ensemble 

learning algorithms are group into two categories: the 

first category includes classic ensembles, such as 

Bagging, AdaBoost, AdaBoost.M1 and 

AdaBoost.M2, which are not applicable for 

imbalanced data sets; the other category include the 

algorithms like Cost-sensitive Boosting, Boosting-

based, Bagging-based and Hybrid ensembles [49], 

which can deal with the skewed class distribution. In 

Section III, we have given brief descriptions about 

these algorithms.    

So to give an overview idea, Table 3 summarizes the 

entire algorithm groups along with abbreviations and 

short descriptions. Table 4 shows the rest of the 

parameters necessary for the algorithms to execute.        

B. Statistical Tests 

  In order to compare the performances of different 

learning algorithms, a statistical support is required 

[95]. For statistical comparisons, we need a set of 

nonparametric tests because it may happen that the 

initial condition does not get satisfied as a result the 

statistical report may lose its credibility.      

To find the performance of different algorithms, two 

types of comparisons are made i.e. pairwise 

comparisons and multiple comparisons. Pairwise 

comparisons are made between a pair of algorithms 

and the better algorithm is chosen using Wilcoxon 

paired signed rank test [96]. Multiple comparisons 

are made between numbers of algorithms. Iman-

Davenport test [98] is used to measure the statistical 

differences among the algorithm results. To find the 

best algorithm in the group, Holmpost-hoc test [37] 

can be used. Similarly, to find the distinct algorithm, 

n× n comparisons are required and this can be done 

using Shaffer post-hoc test [38]. The post-hoc 

methods can be used to determine rejection factor of 

the hypothesis of comparison at a particular level of 

significance (α). Besides this, it can also compute the 

p-value for each comparison, which determines the 

lowest level of significance of the hypothesis that 

leads to rejection [49]. From the two parameters we 

can analyse how far the two algorithms differ.  

The performance of the algorithms can also be 

detected by computing the average ranking of the 

method. The rankings are determined by allocating 

rank to individual algorithm and first rank (value 1) is 

allocated to the best algorithm, second rank (value 2) 

is allocated to the second best, and it is followed on. 

At last the average ranking of a method is computed 

by taking the average of the ranks of all data sets 

used.   
 

VI. RESULTS 

 

   The algorithms that we have discussed in the 

previous section will undergo different empirical 

comparisons. For the experiments we have use the 

dataset which contains credit card transactions of 

European cardholders in September 2013. This 

dataset is highly imbalanced which have 492 frauds 

out of 2,84,807 transactions [39]. To evaluate the 

performance of the ensemble learning algorithms by 

using, we divide the procedure into three phases: 

A. No. of classifiers 

         In this phase, we focus on the configuration 

of the number of classifiers that is best suitable for 

the algorithms. We compare the performance of the 

algorithms by executing with both 10 and 40 number 

of classifiers as done in the research work [49]. All 

the families are executed with this configuration 

except non-ensemble, hybrids and IVotes methods. 

Each of the algorithms is tested on both the 

configuration of classifiers using Wilcoxon signed-

rank test. Table 5 shows the results of Wilcoxon tests 

of each family. In this case, “1” is appended to the 

algorithm abbreviation to represent ten classifiers and 

“4” for forty classifiers. It also shows the ranks of 

each method and the hypothesis is tested with a 

significance value of α= 0.05, it also compute the p-

value which represent the difference between the two 

classifiers. The last field of the table depicts the 

configuration that is required for the next phase, 

determined as per either the hypothesis results or as 

per ranks. 

Table 5 represents that, classic boosting methods 

(i.e. ADAB and M1) performs better with 40 

classifiers, whereas M2 shows better results with 10. 

Similarly, most of the methods of classic bagging and 

bagging-based techniques perform better with 40 

classifiers, except UOB method. But, the RUS 

method of boosting-based approaches outperform 

with 10 classifiers. The cost-sensitive method (C2) 

achieves a p-value of nearly 0.05 with 40 classifiers, 

which is evaluated method of utilized family. Just 

like this, SBAG and MBAG are getting selected with 

40 classifiers due to their very low p-value. 
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B. Intrafamily Comparison 

 In the second phase, comparisons between the 

families are done. Each family has a pair of 

algorithms, so using different tests the best 

algorithms are selected and those methods can be 

used in the final phase. To determine the best method 

in a family, either we can use Wilcoxon signed-rank 

test for pairwise comparison; or, we can use Iman-

Davenport test followed by Holm post-hoc if 

required. Since in our study we are considering five 

different families of algorithms, so this subsection is 

divided into five parts and in each part one family 

will be analysed: 

 Non-ensemble Methods: The algorithms belong to 

this family are C45 (C4.5 decision tree) and SMT 

(C4.5 implementation on preprocessed data-sets 

like SMOTE). The algorithms performances are 

measured using Wilcoxon test and result is shown 

in Table 6. It is observed that SMT is better than 

C45 due to higher ranks and rejected null 

hypothesis with a p-value of 0.00039. 

 Classic Ensembles: This family includes both 

boosting and bagging methods. The average 

rankings of the methods are evaluated using Iman-

Davenport test. The method having highest 

average ranking is the worst performer. As a 

result, M14 will be chosen as the representative of 

the family for securing the lowest average ranking 

(shown in Fig.5). 

Table 3. Algorithms used in the experimental study 

Non-ensemble Classifiers 

Abbr.      

Techniques 

Brief  Description 

C45     C4.5 Classic C4.5 decision tree 

learning algorithm 

  SMT SMOTE+C4

.5 

C4.5 applied on data-sets 

previously pre-processed 

with SMOTE 

Classic Ensembles 

Abbr.      

Techniques 

Brief  Description 

ADA

B 

AdaBoost Classic AdaBoost, without 

using confidences 

M1 AdaBoost.M

1 

Multi-class  AdaBoost, 

slightly different weight 

update 

M2 AdaBoost.M

2 

Multi-class AdaBoost using 

confidence estimates 

BAG Bagging Classic Bagging, 

resampling with 

replacement, bag  size equal 

to original data-set size 

Cost-sensitive Boosting Ensembles 

Abbr.      

Techniques 

Brief  Description 

C2 AdaC2 AdaBoost  along with cost 

outside the exponent 

                           Boosting-based Ensembles 

Abbr.      

Techniques 

Brief  Description 

RUS RUSBoost AdaBoost.M2 with random 

undersampling in each 

iteration 

SBO SMOTEBoo

st 

AdaBoost.M2 with SMOTE 

in each iteration  

MBO MSMOTEB

oost 

AdaBoost.M2 with 

MSMOTE in each iteration 

                              Bagging-based ensembles 

 

Abbr. 

     

Techniques 

Brief  Description 

UB UnderBaggi

ng 

Bagging with 

undersampling of the 

majority class, data-set size 

doubles the number of 

positive instances 

UB2 UnderBaggi

ng2 

Bagging with resampling of 

both classes (balance), data-

set size doubles the number 

of positive instances 

OB OverBaggin

g 

Bagging with oversampling 

of the minority class, data-

set size doubles the number 

of negative instances 

OB2 OverBaggin

g2 

Bagging with resampling of 

both classes (balance), data-

size doubles the number of 

negative instances 

UOB UnderOverB

agging 

Bagging where the number 

of instances of each bag 

varies (from undersampling 

to oversampling) 

SBA

B 

SMOTEBag

ging 

Bagging in case of 

individual bag‟s SMOTE 

quantity differs 

MBA

G 

MSMOTEB

agging 

Bagging in case of 

individual bag‟s MSOMTE 

quantity differs 

SPw IIVotes weak IVotes the SPIDER (weak) 

in each iteration 

SPr IIVotes 

relabel 

IVotes with SPIDER 

(relabel) in each iteration 

SPs IIVotes 

strong 

IVotes with SPIDER 

(strong) in each iteration 

Hybrid Ensembles 

Abbr.      

Techniques 

Brief  Description 

EAS

Y 

EasyEnsemb

le 

UB2 but learning each bag 

with AdaBoost 

BAL BalanceCasc

ade 

Similar to EASY but 

eliminating majority class 

instances in individual 

bagging iteration  

 
Table 4. Parameter specification for the algorithms to 

be used in the experiment 

  

Algorithm   

       Parameters 
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SMOTE No. of Neighbors(k=5),  Quantity = 

Balance amount 

Distance = Heterogeneous Value 

Difference Metric 

C2 Cmin  =1, Cmaj =1/IR 

SBO, 

MBO 

Use SMOTE‟s configuration  

SPIDER Number of Neighbors k=5 

EASY 

BAL 

Number of Bags =4 

AdaBoost Iterations = 10  

Table 5. Determination of number of classifiers 

Compariso

n 

R+ R- Hypoth

esis 

(α=0.05

) 

p-

valu

e 

Selec

ted 

ADAB4 vs. 

ADAB1 

616.

0 

373.

0 

Not 

Rejecte

d 

0.17

791 

ADA

B4 

M14 vs. 

M11 

558.

0 

432.

0 

Not 

Rejecte

d 

0.58

135 

M14 

M24 vs. 

M21 

487.

0 

503.

0 

Not 

Rejecte

d 

0.94

587 

M21 

BAG4 vs. 

BAG1 

792.

5 

197.

5 

Rejecte

d for 

BAG4 

0.00

063 

BAG

4 

C24 vs. C21 680.

5 

309.

5 

Not 

Rejecte

d 

0.05

341 

C24 

RUS4 vs. 

RUS1 

301.

0 

689.

0 

Rejecte

d for 

RUS1 

0.01

934 

RUS1 

SBO4 vs. 

SBO1 

493.

5 

496.

5 

Not 

Rejecte

d 

0.80

592 

SBO1 

MBO4 vs. 

MBO1 

504.

0 

486.

0 

Not 

Rejecte

d 

0.93

076 

MBO

4 

UB4 vs. 

UB1 

834.

5 

155.

5 

Rejecte

d for 

UB4 

0.00

009 

UB4 

UB24 vs. 

UB21 

753.

5 

236.

5 

Rejecte

d for 

UB24 

0.00

404 

UJB2

4 

OB4 vs. 

OB1 

502.

0 

488.

0 

Not 

Rejecte

d 

0.95

909 

OB4 

OB24 vs. 

OB21 

601.

0 

389.

0 

Not 

Rejecte

d 

0.26

104 

OB24 

UOB4 vs. 

UOB1  

385.

0 

605.

0 

Not 

Rejecte

d 

0.13

926 

UOB

1 

SBAG4 vs. 

SBAG1 

625.

5 

364.

5 

Not 

Rejecte

d 

0.11

482 

SBA

G4 

MBAG4 vs. 

MBAG1 

643.

5 

346.

5 

Not 

Rejecte

d 

0.07

690 

MBA

G4 

R+ corresponds to the execution with 40 and R- to 10 

classifiers. 

Table 6. Wilcoxon tests for non-ensembles methods 

Compa

rison 

R+ R- Hypothesis 

(α=0.05) 

p-

value 

Selecte

d 

SMT vs. 

C45 

798.5 191

.5 

Rejected for 

SMT 

0.0003

9 

SMT 

R+  ranks in favour of SMT and R- in favour of C45. 

 

Fig5: Projection of average rankings of classic 

ensembles. 

 

 

Fig 6: Projection of average rankings of boosting-based 

ensembles. 

 

Fig7: Projection of average rankings of IIVotes-based 

ensembles. 

Table 7. Test to reduce bagging-bsed ensembles trough 

Wilcoxon tests 

Compari

-son 

R+ R- Hypothe

sis 

(α=0.05) 

p-value sele

cted 

UB24 vs. 

UB4 

458.

5 

531.5 Not 

Rejected 

0.63516 UB

4 

OB24 vs. 

OB4 

913.

0 

77.0 Rejected 

for OB24 

1.06E-

06 

OB

24 

MBAG4 

vs. 

SBAG4 

285.

0 

705.0 Rejected 

for 

SBAG4 

0.01065 SB

AG

4 
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Fig 8:Projection of average rankings of bagging-based 

ensembles. 

Table 8. Comparison between SBAG4 and UB4 

Comparison R+ R- Hypothesis 

(α=0.05) 

p-value 

SBAG4 vs. 

UB4 

492 497 Not 

Rejected  

0.94224 

R+  denotes  rank  of SBAG4 and R- denotes rank 

of  UB4. 

Table 9. Wilcoxon test for hybrid methods 

Compa

rison 

R+ R- Hypothes

is 

(α=0.05) 

p-

value 

Selecte

d 

BAL 

vs. 

EASY 

418.5 571.5 Not 

Rejected 

0.335

6 

EASY 

R+ are ranks for BAL and R- for EASY. 

 Boosting-based Ensembles: It includes 

methods like RUSBoost, SMOTEBoost and 

MSMOTEBoost. Here, also the average ranking 

methods are evaluated based on the test (shown in 

Fig.6). RUS1 method is considered as the control 

algorithm (or best algorithm) due to lowest average 

ranking.  

 Bagging-based Ensembles: A Bagging-

based ensemble contains similar types of approaches, 

i.e. UB/UB2, OB/OB2, and SBAG/MBAG. So, 

instead of evaluating each individual method, we will 

first select the appropriate method from each pair 

using Wilcoxon test. In the next phase, evaluation is 

done to find the overall best performer using Iman-

Davenport test. The results of Wilcoxon tests are 

shown in Table-7. Among UnderBagging methods, 

the undersampling of majority class instances (UB4) 

is selected due to its higher ranks. Similarly, in case 

of OverBagging, OB2 performs better than OB 

because of its higher ranks than OB. In synthetic 

oversampling methods, SMOTEBagging outperforms 

MSMOTE. So the methods that are selected in the 

first phase are UB4, OB24 and SBAG4. 

Bagging-based approaches also include IIVotes 

ensemble methods which integrate SPIDER 

processing technique with IVotes. This approach 

includes three methods i.e. IIVotes weak (SPw), 

IIVotesrelabel (SPr) and IIVotesStrong (SPs). Fig. 7 

shows the computation of average ranking of these 

methods using Iman-Davenport test, where SPr 

obtains highest average ranks (i.e. 1.84). Finally, all 

the selected methods in first phase (i.e. UB4, OB24, 

SBAG4 and SPr) are compared using the same test. 

Fig 8 shows the computational results of the test. 

From the figure we conclude that the average ranking 

of SBAG4 is very close to that of UB4. So to draw a 

significant difference between these two methods, 

Wilcoxon test is carried out (Table 8). From this test 

we conclude that SBAG4 performs overall slightly 

better than UB4 and so SBAG4 will be treated as the 

representative of this family.    

 Hybrid Ensembles: This family includes two 

approaches, Easy and Bal. Wilcoxon signed-rank test 

is utilized to determine the best hybrid method. The 

result of the test is depicted in Table- 9. 

C. Interfamily Comparison 

In the previous two phases, we have selected the 

best method from each family, so now in this phase 

the globally best method will be selected. Table 10 

shows the selected methods from each family along 

with their average rankings. The rankings are 

computed using Iman-Davenport test, and the Table 

10 shows that the ranks of SBAG4 and RUS1 are 

very close to each other. So inorder to achieve the 

best algorithm, a pairwise comparison is done 

through Wilcoxon test (Table 11). Therefore, SBAG4 

is regarded as the best algorithm of the hierarchical 

analysis where the ranks are considered as the vital 

ones. 

Table 10. Summary of average rankings of the 

representatives of individual family 

Family Method Abbr. Av

g. 

Ra

nki

ng 

Non-

ensemble 

SMOTE SMT 4.0

1 

Classic AdaBoost.M2(N=4

0) 

M24 4.7

6 

Cost-

sensitive 

AdaC2(N=40) C24 3.5

8 

Boosting-

based 

RUSBoost(N=10) RUS1 2.6

8 

Bagging-

based 

SMOTEBagging(N

=40) 

SBAG4 2.4

5 

Hybrids EasyEnsemble Easy 3.5

1 

Table 11. Comparison between SBAG4 and RUS1 

through Wilcoxon tests 

Compariso

n 

R+ R- Hypothes

is 

(α=0.05) 

p-

value 

SBAG4 vs. 

RUS1 

527.5 462.5 Not 

Rejected  

0.7171

7 

      R+ are ranks for SBAG4 and R- for RUS1. 
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VII. CONCLUSION and  FUTURE WORK 
 

In this review paper we present a brief description 

about credit card FDS, the major challenges faced by 

the system and provides a set of solutions to tackle 

the imbalanced credit card transactions. This survey 

paper also provides a comprehensive study on the 

ensembles learning algorithms to address this 

problem. Several researchers have, integrated 

different methodologies to enhance the induced 

classifiers along with class imbalance through 

utilization of varieties of ensemble learning 

algorithms. Due to absence of a specific framework 

approach to classify each one of them, here we 

present a new classification that is based on four 

different families which possess their own ensemble 

learning algorithms as well as techniques to address 

the imbalance fraudulent transactions. We have 

performed a hierarchical analysis which was 

followed by nonparametric statistical tests. We have 

also done comparison between classic ensemble 

approaches and non-ensemble approaches. 

Finally, we conclude that our study on the 

imbalanced credit card transactions along with their 

issues, state-of-the-art solutions to tackle this 

problem and the different assessment measures to 

evaluate the performance of the detection model will 

act as comprehensive resource in the future. It has 

been observed that ensemble-based algorithms 

provide better results by utilization of data pre-

processing techniques along with trained single 

classifier. So, this ensemble learning approaches can 

be implemented for fraud detection problem to obtain 

better practical results as compared to other 

approaches. 
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