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Abstract— Standard Deviation is a household 

statistic, a very important parameter in the analysis 

of data sets and measurements.  Over the decades 

before the advent of computers, its use is rarely seen 

outside the confines of scientific laboratories. But 

the new dawn of data age has transformed its 

evolution and appreciation as a valuable metric. 

This paper is a study of Standard Deviation and 

application in the field of Geomatic Engineering. 
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I. INTRODUCTION 

 

Measurements are common in science and 

engineering to determine the value of parameters, 

such as length, angle, temperature etc. Normally, in 

cases requiring a high degree of reliability, a single 

measurement is not enough. Therefore apart from 

several observations, a check measurement may 

even be conducted by a different team. As such this 

unknown quantity is of stochastic nature, a random 

variable that can take on any value within a range. 

 

In following the formal definition [1, 2], a random 

variable is a function X that assigns to each possible 

outcome in an experiment a real number. If X may 

assume any value in some given interval I (the 

interval may be bounded or unbounded), it is called 

a continuous random variable. If it can assume only 

a number of separated values, it is called a discrete 

random variable. 

 

When as often the case there is a large set of 

observations, the challenge would be to determine 

reliable measurements from which to obtain the 

most probable value of unknown quantity. Such a 

decision will have to be built on sound criteria, 

based on pattern and convergence in the data set. 

 

A. Data Pattern 

 

The pattern of observations is best gauged 

through a form of distribution. One way is via 

histograms and probability density functions.  

 
Fig 1 

 

Consider relative frequency, F(X), distribution as 

in a histogram, Fig 1. Then the probability of 

observation falling within an interval ΔX is given by 

F(X) * ΔX. As the interval is subdivided into smaller 

and finer units, a limiting function obtains where: 

 

lim𝑛 →∞  𝐹(𝑋𝑖
𝑛
𝑖=1 ) ∆𝑋 =   𝑓 𝑥 𝑑𝑥

𝑏

𝑎
 

 

The function f(x) is known as probability density 

function. Formally, it is defined on an interval (a, b) 

and having the following properties: 

 

a) f (x) ≥ 0 for every x 

b)  𝑓 𝑥 𝑑𝑥  = 1
𝑏

𝑎
 

 

There are quite a number of such distribution 

functions that suit applications. For instance, Decay 

studies are best described by Exponential form while 

Queues find match in Poisson distributions.  

 

However when it comes to survey measurements, 

the Central Limit Theorem [3, 4] offers a guide in 

the choice of distribution. Stated thus, a large class 

of probability density functions, given, for example, 

by repeated measurement of the same random 

variable, may be approximated by normal density 

functions. 

 

B. Normal Distribution. 

 

A normal probability density function assumes 

the form of Fig 2, and is expressed as: 

 

𝑓 𝑥 =  
1

𝜎 2𝜋
𝑒
−

(𝑥−𝜇 )2

2𝜎2  



International Journal of Engineering Trends and Technology (IJETT) – Volume 63 Number 1- September 2018 

 

ISSN: 2231-5381                    http://www.ijettjournal.org                                      Page 50 

 

where the domain is (−∞, +∞). The quantity μ is 

called the mean and can be any real number, while σ 

is called the standard deviation and can be any 

positive real number. 

 

 
 

Fig 2 

 

The properties of a Normal Density Curve are as 

follows: 

 

a) It is “bell-shaped” with the peak occurring 

at x = μ. 

b) It is symmetric about the vertical line x = μ. 

c) It is concave down in the range μ − σ ≤ x ≤ 

μ + σ. 

d) It is concave up outside that range, with 

inflection points at x = μ − σ and x = μ + σ. 

 

Upon further examination, the following 

deductions can also be arrived at: 

 

a) Approximately 68.3% of the area under the 

curve lies between 𝜇 ± 𝜎 

b) Approximately 95.4% of the area under the 

curve lies between 𝜇 ± 2𝜎 

c) Approximately 99.7% of the area under the 

curve lies between 𝜇 ± 3𝜎 

 

The above parameters are defined with respect to 

data population. In actual fact, measurements in the 

field constitute only a sample and so it is important 

to work with unbiased estimates. 

 

1. Expectation: 

 

If a random variable x has a continuously 

differential function CDF F(x), and a PDF f(x), then 

the expectation of x, E{x} is the mean value taken 

over the population [5]. Hence: 

 

E{x} = 
 𝑥𝑓(𝑥)𝑑𝑥
∞
−∞

 𝑓(𝑥)𝑑𝑥
∞
−∞

=   𝑥𝑓 𝑥 𝑑𝑥
∞

−∞
 

 

For a step CDFE{x}=
 𝑥𝑖
∞
−∞ 𝑝𝑖

 𝑝𝑖
∞
−∞

=   𝑥𝑖
∞
−∞ 𝑝𝑖  

For n random variables x1, x2,…, xn, it can be 

shown that 

 

E{x1 +x2 + … +xn}  

= E{x1} + E{x2} + …+ E{xn}  --- (4) 

 

Similarly for a constant c, E{cx} = c.E{x}  

 

The same arguments can be applied for variance 

and standard deviation. So if a random variable x, 

has expectation  𝜇, its variance V{x} is defined as: 

 

V{x} = 𝐸 (𝑥 − 𝜇)2 =  𝜎𝑥
2  --- (5) 

 

If x has PDF, f(x) then as defined 

 

V{x} = 𝜎𝑥
2 =   (𝑥 − 𝜇)2𝑓 𝑥 𝑑𝑥

∞

−∞
 

 

And for discrete CDF, F(x),  

 

V{x} = 𝜎𝑥
2 =  (𝑥𝑖 − 𝜇)2𝑝𝑖 ,

∞
−∞   --- (6) 

 

where pi is the probability that x = xi. 

 

Continuing let z = x + y, and μ and ξ be the 

expectation of x and y respectively. Then 

 

V{z} = V{x + y} = 𝐸 (𝑥 − 𝜇 +   𝑦 −  𝜉)2  
 

= 𝐸 (𝑥 − 𝜇)2 +  (𝑦 −  𝜉)2 + 2(𝑥 −  𝜇)(𝑦 −  𝜉  
 

Substituting (5) and assuming zero covariance, 

 

V{z} = 𝜎𝑥
2 +  𝜎𝑦

2   --- (7) 

 

2. Propagation: 

 

It is common having to process readings as sums 

and in forms of expressions. For instance, a 

measured value may require applying corrections for 

temperature, pressure, refraction etc. These are 

themselves stochastic variables and for which, the 

propagation of variance is important. 

 

Starting with a linear function of a single variable, 

y = ax + b, where the expectation of x and y is μ and 

ξ respectively: 

 

E{y} = ξ= E{ax + b} 

 

= a.E{x} + b = aμ + b 

 

and 

 

Var(y) = E{(y – ξ 2} = E{(ax + b -  aμ - b)2} 
 
= E{(ax-  aμ)2} = a2E{(x - μ)2} 
 
∴ 𝜎𝑦 

2  =  𝑎2𝜎𝑥
2    --- (8) 
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Going further, consider z = a1x1 + a2x2 + … + anxn, 

where xi are random variables with expectations μi 

and variance 𝜎𝑥𝑖  respectively. The expectation ℒ of z 

may then from (4) be given as: 

 

E{z}  = ℒ = a1μ1 + a2μ2 + … + anμn ---(9) 

     

Similarly, from (8) and (9) it can be shown: 

 

𝜎𝑧
2 =  𝑎1

2𝜎𝑥
2

1
 +  𝑎2

2𝜎𝑥
2

2
+ ⋯ +  𝑎𝑛

2𝜎𝑥
2
𝑛

 --- (10) 

 

It is not always the case that relationships are 

linear. There are instances of non-linear functions 

involving several variables. 

 

Consider 

y = f1(x1, x2, … xm) 

 

where y  is a function of variables,  x1, x2, ….xm. 
 

The Jacobian matrix for this equation is defined 

as: 

 

Jyx =  
𝜕𝑦

𝜕𝑥1

𝜕𝑦

𝜕𝑥2
…

𝜕𝑦

𝜕𝑥𝑚
  

                                                                  1 x m 

 

If the variance matrix of x is 

 

Cx =  

𝜎𝑥1

2           

 

𝜎𝑥2

2

 

 

   
 

 

 

𝜎𝑥𝑚
2

  

                                                          m x m 

 

then the covariance matrix of y is:  

 

Cy = J
yx
 Cx

 J
yx
T . Hence Cy =  𝜎𝑦

2     --- (11)

  

3. Sampling: 

 

Sample mean and variance are obtained in the 

course of field measurements, but how good are they 

with respect to population. 

 

The arithmetic mean of a random sample 

consisting of n independent observed values x1, x2, 

… xn is defined as: 

 

𝑥 = (1
𝑛 ) 𝑥𝑖

𝑛
𝑖 =1  --- (12) 

And 

𝐸{𝑥 }  = (1
𝑛 )   𝑥𝑖

𝑛

1
  

From (9) 

 

𝐸 𝑥  =   1
𝑛   𝜇 +  𝜇 + ⋯ +  𝜇 =  𝜇 

Therefore the sample mean can be adjudged to be 

unbiased estimator of population mean. Its variance, 

from (10) is: 

 

𝜎𝑥 
2 =  

𝜎𝑥
2

𝑛  

 

From the above therefore, the standard deviation 

of the mean is: 

 

𝜎𝑥 =  
𝜎𝑥

 𝑛
   --- (13) 

 

Recalling from (6),  

 

V{x} = 𝜎𝑥
2 = (1

𝑛 ) (𝑥𝑖 − 𝑛
𝑖 =1 𝜇)2 

 

However, in practice the population mean is 

unknown and using sample mean instead, an 

unbiased solution can be found as: 

 

V{x} = 𝑠𝑥
2 = (

1

𝑛−1
) (𝑥𝑖 − 𝑛

𝑖 =1 𝑥 )2 --- (14) 

 

Applying (13), the standard deviation of the mean 

for a sample observation then becomes: 

 

𝑠𝑥 =  
1

𝑛(𝑛−1)
 (𝑥𝑖 − 𝑛

𝑖 =1 𝑥 )2  --- (15) 

 

Against these backgrounds, evaluation of 

applications to survey instrumentation follows. 

 

II. SURVEY OBSERVATIONS 

 

Survey observations and measurement can be 

categorised into two instrument modes of operation. 

These are the analogue and digital models, for which 

the perspectives of application may be considered.  

 

First though, a number of clarifications are 

essential in describing survey data, namely accuracy 

and precision [6]. 

 

 
Fig 3 

 

Accuracy is associated with correctness. It is a 

degree of how close a reading or measurement is to 

the true value. An example are shots at target,  Fig 3. 
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Precision on the other hand is a description of 

convergence of the measurements. High precision 

have a narrow spread and small standard deviation. 

 

In comparing the two parameters, there are 

instances of low accuracy and high precision as in b 

(Fig. 3). Similarly in c is a representation of high 

accuracy and precision, and a, of low accuracy and 

precision, while in d is an instance of high accuracy 

and low precision. 

 

Survey equipment are usually calibrated, and 

therefore assumed to be error free. Secondly, the 

surveying engineer is assumed to be skilled and 

competent in the use of instrument. Survey 

measurements are therefore in the category of high 

accuracy and high precision, often interchangeable. 

 

A. Analogue Instrumentation 

 

 
Fig 4 

 

Survey analogue instruments include, levels and 

tapes, but are typified mainly by T2, Wild Universal 

Theodolite, as in Fig 4. Reading mechanism is 

characterized by a vernier scale micrometer for fine 

resolution. Thus, this least-count-possible is the 

basis of instrument standard and classification. 

Examples are then, the 1 sec,5 sec instruments etc.  

 

Given stochastic nature of vernier readings, it is 

common to take several observations. An issue that 

arises, with standard of jobs, is the minimum number 

of rounds and round processing. 

 

1. Rounds: 

 

Consider ten equally reliable angle observations 

with values as given in Fig 5. 

No Observation (α) Residual (υ) υ2 

1 16ᵒ  38’ 17” +0.7 0.49 

2 20” +3.7 13.69 

3 14” -2.3 5.29 

4 16” -0.3 0.09 

5 14” -2.3 5.29 

6 21” +4.7 22.09 

7 16” -0.3 0.09 

8 12” -4.3 18.49 

9 15” -1.3 1.69 

10 18” +1.7 2.89 

Fig 5 

 

The sample mean can be computed from (12). 

Thus: 

 

 𝛼  =  16ᵒ  38’ 16". 3 

 

The standard error (deviation) by (14) is given as: 

 

𝑠𝛼  =   
 𝜐2

𝑛 − 1
=  

70.10

10 − 1
≈ ±2". 79  

 

Similarly in respect of the mean, the standard 

error as computed from (15) gives: 

 

𝑠𝛼 =
𝑠𝛼

 𝑛
 = ±2.79

 10
 = ±0". 88 

 

Therefore the observed angle can be quoted as 

 

𝛼  =  16ᵒ  38’ 16". 3 ± 0". 88 
 

The relationship between the standard errors and 

number of rounds is obvious on inspection of the 

equation. If for instance, the mean is required at an 

error of ±1”, then  

 

±1 = 2.79 /√n. Therefore n = 8 rounds 

 

It should be explained that standard deviation in 

analogue measurement is a description of a 

particular observer. In specifying the number of 

rounds therefore, it is assumed that the spread and 

pattern of observations are unchanged. This criterion 

is normally used when specifying the number of 

rounds in any order of survey and instrument 

resolution. 

 

2. Processing: 

 

The challenge on processing is about determining 

and selecting good rounds for computation of the 

mean and rejecting bad observations. One of the 

established techniques, over the years, addresses 

outlying observations. 

 

Probabilities based on μ and σ does not apply in 

practice because these quantities are unknown. It is 

therefore necessary to deduce probabilities based on 

unbiased estimators 𝑥  and 𝑠𝑥 . 
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A method that has gained wide acceptance is 

Chauvenet’s criterion [7, 8]. This technique defines 

an acceptable scatter, in a statistical sense, around 

the mean value from a given sample of N 

measurements. The criterion states that all data 

points should be retained that fall within a band 

around the mean that corresponds to a probability of 

1-1/(2N).  

 

In other words, data points can be considered for 

rejection only if the probability of obtaining their 

deviation from the mean is less than 1/(2N). This 

illustration is shown in Fig 6. 

 

 
 

Fig. 6 
 

The probability 1-1/(2N) for retention of data 

distributed about the mean can be related to a 

maximum deviation dmax away from the mean by 

using the Gaussian probabilities. For the given 

probability, the non dimensional maximum deviation 

τmax can be determined from the table where 

 

τ𝑚𝑎𝑥  =
𝛴(𝑥𝑖 − 𝑥 )𝑚𝑎𝑥

𝑆𝑥
 =  

𝑑𝑚𝑎𝑥

𝑆𝑥
 

 

and SX is the precision index of the sample. 

Therefore, all measurements that deviate from the 

mean by more than τmaxSX can be rejected. A new 

mean value and a new precision index can then be 

calculated from the remaining measurements. No 

further application of the criterion to the sample is 

allowed; Chauvenet’s criterion may be applied only 

once to a given sample of readings. 

 

Consider a numerical example [5], consisting of 

rapid micrometer readings of a 1” theodolite, Fig 7. 

 
No 𝒙𝒊  (secs) (𝒙𝒊  - 𝒙  ) (𝒙𝒊  - 𝒙  )2 

1 41 -3.2 10.24 

2 38 -6.2 38.44 

3 38 -6.2 38.44 

4 58 +13.8 190.44 

5 47 +2.8 7.84 

6 39 -5.2 27.04 

7 46 +1.8 3.24 

8 44 -0.2 0.04 

9 41 -3.2 10.24 

10 50 +5.8 33.64 

Fig 7 

 

Then 

 

𝑥  = 44". 2 𝑎𝑛𝑑  (𝑥𝑖 − 
𝑛

𝑖 =1
𝑥 )2 = 359.60 𝑠𝑒𝑐2  

 

∴ 𝑠𝑥
2 = 39.96 𝑎𝑛𝑑 𝑠𝑥 ≈ 6" 

 

 
Fig. 8 

 

With respect to Fig 7 and reading the scale of 

probabilities in Fig 8, it can be seen that given a case 

of 1%, the maximum residual which can be accepted 

is 2.48 x 6” = 15”.Therefore the fourth reading is 

acceptable. Going higher however at 5%, the 

maximum acceptable residual is 2.28 x 6 = 13.7”. 

The fourth reading is rejected therefore and also at 

any higher level of probability. 

 

The only drawback in this technique, as stated 

earlier, is that the criteria can only be applied once to 

a given sample. However as discussed in [9], 

Thompson variants can overcome this limitation 

with corresponding increase in number of 

observations. 

 

Analogue instrumentation are nowadays mainly 

of historical significance and has given way to 

digital equipment, with revisions to techniques in 

round processing.  Nevertheless, this tract highlights 

the origins of standard deviation as a metric in 

qualitative analysis. 

 

B. Digital Instrumentation 

 

Digital instruments are a major contrast to 

analogue options. Starting with electronic 

theodolites, electronic distance measurement and 

digital levels, evolutions has seen the emergence of 

computer measuring systems.  

 

The most vivid is the Total Station, Fig 9. It is an 

integrated system with on-board CPU, RAM, GUI 

and Operating System. They are programmable and 
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can be configured to operate under automation in 

remote locations.  

 
Fig. 9 

 

Equipped in some instances with camera and 

scanner they are indeed resourceful platforms. The 

basic specifications are as follows: 

 
Item Standard 

Deviation  

Display 

Resolution 

Remarks 

Angle 

Measurement. 
Hz & V   

1”, 2”, 3”  

and 5” 

0.5”, 1” ISO  

17123-3 

Distance 

Measurement 

1mm+5ppm  

2mm+2ppm 

Range of 

1.5m-3500m 

ISO  

17123-4 

 

These specifications highlight the major 

difference between analogue and digital system. In 

the former, standardization is based on resolution 

and standard deviation is associated with the 

surveyor. In this case, instruments have ISO certified 

values of standard deviation. These are population 

parameters that serve as references for computation 

of covariance of unknown positions. 

 

The measure of precision of theodolites is 

expressed in terms of the experimental standard 

deviation (root mean square error) of a horizontal 

direction (HZ), observed once in both face positions 

of the telescope or of a vertical angle (V) observed 

once in both face positions of the telescope. 

 

It should be noted that tests performed in 

laboratories would provide results which are almost 

unaffected by atmospheric influences. The costs for 

such tests are very high, and therefore they are not 

practicable for most users. Therefore, laboratory 

tests yield precisions much higher than those that 

can be obtained under field conditions [10]. 

 

1. Rounds: 

 

Rounds are specified in view of required standard 

and order of survey, which in turn prescribes error 

margin for the mean of observations. Thus equation 

(13) may be recalled: 

𝜎𝛼 =  
𝜎𝛼

 𝑛
  

However, the direction observations D, first have 

to be reduced to angles, and for which error 

propagation procedure is applicable. Thus from (7): 

 

𝜎𝛼
2= 𝜎𝐷

2 +  𝜎𝐷
2 . Let σD  = 2” then 𝜎𝛼  = √8 = 2”.82 

 

Suppose the error margin required for the mean 

observed angle is ±1”, the number of rounds is: 

 

𝑛 = (
𝜎𝛼

𝜎𝛼  )2 = (2.82
1 )2 = 8 𝑟𝑜𝑢𝑛𝑑𝑠 

 

If for instance the precision of instrument is 3”, 

the number of rounds becomes 18 and even more, as 

much as 50 at 5”. It becomes clear therefore that 

when the standard of survey is high, the use of 

equally high precision equipment is imperative. 

 

2. Processing: 

 

A number of important notes have to be taken into 

account, in comparison to analogue situation: 

 

a. The instrument is the observer, rather 

than human. This is particularly true in 

robotic operations. 

b. The standard deviation of observation is 

a population parameter, invariant and as 

stipulated by ISO 17123-3 and ISO 

17123-4 certifications. 

c. Given any set of rounds therefore, the 

task is to verify degree of congruence 

between 𝑠𝛼  of measurement and 𝜎𝛼 , the 

instrument standard. 

d. Noting that laboratory tests yield 

precisions much higher than those that 

can be obtained under field conditions, it 

should be expected that (𝑠𝛼 − 𝜎𝛼) > 0 . 

 

Therefore given any rounds of observation, 

processing proceeds as follows: 

 

1. Compute the standard deviation 𝑠𝛼  of the 

set of observations n, n ≥Min. 

 

a. Case (n < Min) Terminate Process 

 

2. Taking note of (d), compare with 

instrument standard setting of 2𝜎𝛼 . 
 

a. Case (𝑠𝛼 − 2𝜎𝛼) ≤ 0 , then all 

rounds is acceptable. Process ends. 

b. Case (𝑠𝛼 − 2𝜎𝛼) > 0 then  

 

i. Determine the largest 

residual 

ii. Delete from the list of 

rounds 

iii. Return to 1. 
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As an illustration, consider the readings in Fig 7, 

where 𝑠𝛼 =  6".  Let the precision of instrument 

be  𝜎𝐷 = 2" then 𝜎𝛼  =  2”. 82 . Then (𝑠𝛼 − 2𝜎𝛼) >
0, and case 2b is applicable. The largest residual is 

No 4 on the table. Delete item 4 and recompute to 

get 𝑠𝛼 =  4". 6. With the case of (𝑠𝛼 − 2𝜎𝛼) ≤ 0 the 

process ends with selection of nine rounds. Note that 

this result is in agreement with the result of 

application of Chauvenet’s criterion, at a probability 

of 5%. 

 

Further example involving precise measurements, 

comes from table in Fig 5. Let the standard deviation 

of instrument, 𝜎𝐷  be ±1”, for which 𝜎𝛼  =  ±1”. 41. 
With 𝑠𝛼 =  ±2". 79, and  2𝜎𝛼  = 2”.82, the result is 

(𝑠𝛼 − 2𝜎𝛼) < 0. Therefore all rounds are acceptable. 

 

 
Fig 10 

 

This algorithm has found application [11] in SMS, 

Fig 10 and is in concord with the rule-of-the-thumb 

approach that many surveyors apply when selecting 

rounds from observations. 

 

Quantifying the margin by which laboratory tests 

is higher than field determination of standard 

deviation is not feasible, because of dynamic nature 

of atmospheric conditions. However, setting the 

margin in the range of 2.0𝜎𝛼 , at a probability of 5% 

rejection has been satisfactory. 

 

The variable Min may serve the purpose of 

restricting the number of deletions. By default Min, 

the minimum number of observations, is two.  

 

III. RESULTS 

 

Results analysis usually is the next task that 

follows the completion of a survey, and is a very 

important feature of any project management. In the 

days of analogue measurements, size of data tended 

to be in order of tens, yet it would take weeks or 

even months to arrive at conclusions. 

 

The situation today is much different, with the 

dawn of data age. So rather than sample 

measurements, it is a case of data population, 

comprising of thousands of observations, involving 

equally very large number of positions. And it 

becomes a challenge how best to interpret the data, 

timely. Given that survey measurements follow 

Normal Distribution, it becomes pertinent to 

examine data through the prism and concept of 

standard deviation. 

 

The study in this instance is as applies to Errors 

and Monitoring, with respect to zero centre line. 

 

A. Error Analysis 

 

Errors are in two categories, namely pre- 

computation checks for consistency in the network 

that is in form of loops and post computation that 

examines residual corrections to observations. 

 

1. Loops Closure: 

 

A loop often referred to as a cycle is a route that 

starts and returns to the same origin. In a perfect 

survey the same position is defined but in reality 

there will be some inconsistency that translates as 

closing errors. These errors also are representation of 

condition equations in the network and are therefore 

very important. 

 

 
Fig 11 

 

In Fig 11 is typical closing information in survey 

of a large level network involving 157 cycles. It is 

obvious that the histogram, in the limiting case, is a 

PDF representation of a normal distribution. Thus: 

 

𝑓 𝑥 =  
1

𝜎 2𝜋
𝑒
−

(𝑐𝑙𝑜𝑠𝑢𝑟𝑒 )2

2𝜎2  

and 

𝜎𝑐𝑙𝑜𝑠𝑢𝑟𝑒  =   
 𝑐𝑙𝑜𝑠𝑢𝑟𝑒2

𝑛
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Hence, the concept of Standard Closure is 

adopted in management as a parameter for analysis. 

Let Assessment be defined as 3𝜎𝑐𝑙𝑜𝑠𝑢𝑟𝑒 . If as 

indicated, this value is 14.9mm then approximately 

99.7% of the area under the curve lies between 

±14.9𝑚𝑚. The probability of closure higher than 

this value is 0.3%, and translates into a chance of 

3:1000.  

 

The advantages are as follows: 

 

1. The Standard Closure at a glance 

provides information about the 

dispersion from Centre Line, a zero 

closure condition. 

 

2. Assessment or any factor of 𝜎𝑐𝑙𝑜𝑠𝑢𝑟𝑒 can 

be a reference on which to compare 

with specified tolerance, and a basis to 

gauge performance and acceptability. 

 

2. Residual Corrections: 

 

 
Fig. 12 

 

In Fig 12 is information regarding residuals to 

observations in the network. This example 

comprises of 310 edges in a level survey and for 

each of such run there is a correction. The final 

results are obtained by adding residual correction to 

each edge. 

 

Grouping the information as in a histogram, it can 

be arrived as before that this is a PDF representation 

of a Normal Distribution. Hence: 

 

𝑓 𝑥 =  
1

𝜎 2𝜋
𝑒
−

(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 )2

2𝜎2  

and 

𝜎𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛  =   
 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛2

𝑛
 

 

Useful parameters are Standard Correction and 

Assessment as described earlier. The same 

advantages are applicable in providing spread about 

a zero-correction centre line and criterion for 

evaluation. 

B. Monitoring Analysis 

 

 
Fig. 13 

 

Monitoring is one of the major applications of 

surveying in civil and environmental engineering. It 

requires very high precision surveys and in decades 

ago involved analogue measurements of critical 

points. These days besides Digital Levels and Total 

Stations, other instruments include 3D Scanners. 

 

As a result the size of observations and points can 

be in thousands. The question to be answered rests 

on Movement Analysis. And that basically is to 

ascertain in very few parameters, any detection of 

significant movement, range and spread on base and 

last visits. 

 

The information in Fig13 is a typical monitoring 

result, consisting of huge set of observed points. As 

such, the form of distribution is obvious. 

 

Hence: 

 

𝑓 𝑥 =  
1

𝜎 2𝜋
𝑒
−

(𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 )2

2𝜎2  

and 

𝜎𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡  =   
 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡2

𝑛
 

 

Standard Movement and Assessment are 

parameters for analysis. In the example, at 1.18mm 

against Last Visit, the probability of any movement 

in height above this assessment is 3:1000. 

 

In context of any monitoring exercise, therefore, 

what constitutes a movement may be defined by 

specifying a value that can be compared with 

Standard Movement and derivatives. 

 

It may be noted the distinction between Standard 

Deviation and Standard Parameter. Whereas the 

former is defined about the mean, the latter is 

specified about the Base or Last Visit. The centre 

line may also be visualised as observations in 

residual corrections or start points in cycle process. 
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IV. CONCLUSIONS 

 

This paper charts ways in the evaluation and 

analysis of survey projects. It is coming timely at the 

advent of new technologies, in providing a means to 

cope with surge in data population. In the current 

trend, survey instruments now have standard 

deviation as specifications for errors and measures 

of precision. And taking it further, derivatives of the 

model can, in instances, serve as a metric in 

qualitative analysis. 

 

The starting point of course, is field measurement 

and data collection. These are downloaded into field 

books, Fig 10, where they are processed in 

consistency with quoted instrument precision. Next 

is the collation of data into histograms. In the 

limiting function, and by Central Limit Theorem, 

they represent PDF of Normal Distribution. And 

from the conclusions emerge Assessment parameters, 

for Closure, Residual and Movement etc.  

 

At a glance therefore, these important indices are 

available to assist prompt decision-making in quality 

management. 
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