
International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 2 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 67

Risk Based Approach to Calculate General

Motor Insurance Reserve using High

Performance Computing

Nikhil Rai#1, Akhilesh Pandey*2, Karam Rai#3 , Pallav Kumar Baruah#4, Satya Sai Mudigonda#5 , Phani Krishna

Kandala#6
#Department of Mathematics and Computer Science

Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India

Abstract

 Reserving calculation is a significant step in

the strategic view of an insurance company. It is

preformed periodically in order to show the realistic

view of the future liabilities. Time required to

calculate the reserves would grow exponentially

depending on the size of input. Computation of

reserves might need to be done several times by

taking different factors into consideration. Hence the

computation becomes even more costly in terms of

time.

We applied HPC to calculate reserves using Risk

based approach which is a combination of

calculating a best estimate and risk margin

surrounding this best estimate. Using GPUs we

showed an improvement of 430X speed up compared

to the serial execution for Risk based Inflation

adjusted Chain Ladder Method

Keywords — Accident year cohort, Chain ladder

method (CLM), CUDA, Development year, Graphical

Processing Unit (GPU), ,Risk based Inflation

Adjusted CLM, Reserve.

I. INTRODUCTION

 Reserving is an important exercise to understand

the realistic view of future liabilities. It would help us

design the strategy for future business. It helps

companies to ensure that they do not overstate and

understate company’s liabilities. This ensures

transparency to various categories of stakeholders

such as principals, agents, controllers, advisors and

others including media and general public. Reserves

help to achieve asset liability matching. In order to

determine appropriate reserves, we have different

actuarial methods mentioned below.

There are different methods for calculating motor

in-surance reserves like Chain-Ladder method,

Inflation adjusted Chain Ladder method, Bornhuetter-

Ferguson method etc. which calculate the future

liabilities.

The aforementioned methods does not take into

account the risk margin for the future reserve of an

insurance company. Risk Margin can be defined as

the compensation required for transferring liability to

another party. Under the European Union’s Solvency

II directive, risk margin represents the potential costs

of transferring insurance obligation to a third party

should an insurer fail. It is equal to an insurer’s

baseline solvency capital requirement for

unhedgeable risks multiplied by the cost of capital at

6%.

In the recent years, the Cost of Capital Method

(CoC) has gained popularity as a method to determine

the value of so-called ’unhedgeable’ risks.

Unheadgeable risks are those risks that cannot be

fully hedged with instruments traded in an active

market. This is the case for various risks borne by

insurers and pension funds, such as Longevity,

Mortality, etc. The Risk Margin[1] according to the

CoC method is generally calculated by the following

steps:

1) Project the SCR, the Solvency Capital

Requirement in all future periods of risk

exposure.

2) Multiply the SCR by the Cost-of-Capital rate in

each period.

3) Discount the amounts calculated under(2) using

the risk free rate.

A. Motivation

 Uncertainty involved in calculation of reserves

and the amount of time it takes to calculate is a real

world challenging scenario for most of the insurers.

In order to achieve efficiency, High Performance

Computing is utilized. It would address the above

mentioned concerns by:

1) Performing parallelism for the time efficiency.

2) Producing a distribution of results, reducing the

volatility in the results obtained.

It is mentioned in [2], HiPC provides us the

Scalability and time and cost efficient use of the

resources in reserving. During the recent years, HiPC

has been applied in diverse fields of finance. Josh[3]

priced Asian options and achieved a speed up of

150X. Nguyen[4] parallelized Cox-Ross-Rubinstein

International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 2 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 68

pricing model on GPUs and showed a speed up of

30X. In 2012, Tucker and Bull[5] have explored

HiPC to insurance solvency calculations and achieved

a substantial improvement in performance over

commercial software. Understanding the benefits of

HiPC in calculating the reserve, we have proposed a

new way of parallelizing the Chain-Ladder Method

and Inflation Adjusted Chain Ladder Method for a

best estimate calculation and cost of capital approach

for calculation of risk margin.

The rest of the paper is organized into the

following sections: Section 2 gives an idea about the

Risk based Chain-Ladder and Risk based Inflation-

Adjusted Methods. Section 3 talks about the proposed

method of parallelization. Section 4 talks about the

results and performance gain. Section 5 talks about

the conclusion.

II. METHOD DESCRIPTION

 In this method we give brief idea of the Risk

Based Chain-Ladder Method and Risk Based

Inflation Adjusted Chain-Ladder Method.

A. Risk Based Chain-Ladder Method

The Chain-Ladder Method is considered to be the

most popular and simple model for estimation of

outstanding claims and future reserve, both in theory

and in practice [6]. It is used to estimate the incurred

but not reported claims and project ultimate loss

amounts [7]. Before going into the methodology of this

model, let us try to understand some of the terms that

are frequently used in these methods.

B. Run-Off Triangle

 Run-off triangle (or delay triangles) are an

important topic in the practical work of actuaries

working in general insurance. It is used to forecast

claim numbers and amounts. It usually arises in types

of insurance (particularly non-life insurance) where it

may take some time after a loss until the full extent of

the claims which have to be paid is known. It is

important that the claims are attributed to the year in

which the policy was written. The insurance company

needs to know how much it is liable to pay in claims

so that it can calculate how much surplus it has made.

There are many causes of the delays in the claims

being finalized.

Let us think that, for every accident year, there are

n numbers of claims which occurred during the period,

but only x claims (x <= n) were reported to the

insurer. The unreported claims are known as IBNR

claims which we are trying to estimate using the risk-

based chain ladder method and inflation-adjusted

method. These methods use the historical or past data

to obtain the future reported claims. Mathematically,

the run-off triangle is expressed as follows:

Each entry Cij represents the incremental claims. It

can be expressed as:

where rj is the development factor for year j,

representing the proportion of claim payments in

development year j. Each rj is independent of the

origin year i. si is a parameter varying by origin year i,

representing the exposure. xi+j is a parameter varying

by the calendar year. eij is an error term.

The run-off triangle is shown in Figure 1.

Figure 1. Run-off triangle

C. Chain-Ladder Method

 Chain Ladder [8] as mentioned above, is a

traditional method based on statistics and used for

estimating the ultimate value of a set of development

data. The main assumption and idea of the method are

that present claims will approximately develop like

past claims. This will be used to estimate the total

reserve. The input for the chain ladder method will be

an upper triangle and it predicts the lower triangle,

which indicates the future claims. The input and

output figure is shown in the following figure 2:

Figure 2.Input and output of Chain ladder method.

This chain ladder method works on the following

assumptions:

1) The patterns of claims loss settlement observed

in the past will continue in the future.

2) The estimates for settlement amounts in the

future will be more accurate if all of the

available data is used in the estimation.

Once the future reserves are calculated, it is used to

calculate the risk margin taking into account of a

discount rate. In previous work [2] a part of this

method was already done. In this proposed work, we

extend the work done in [2] to include the calculation

of risk margin, ultimate, and reserve. We have also

International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 2 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 69

proposed a novel method for implementing the

algorithm parallely. We have used a discount rate of

3% and cost of capital approach for calculation of risk

margin.

The Risk-Based Chain Ladder method is captured in

Algorithm 1:

Algorithm 1: Risk Based Chain Ladder Method

Input: Input triangle in incremental form

Output: Reserve estimate, Ultimate, Risk

Margin and Present value of Risk

Margin

1 Step 1: (Find the cumulative sum):

2 The given incremental triangle is

converted into cumulative triangle

3 Step 2: (Calculate the Development)

4 Find the development factors 1, 2,..., n 1

5 Step 3:(Estimate the reserve):

6 Use the development factors calculated above and

used it to calculate the reserve.

7 Step 4: (Find the Ultimate, Risk Margin and

Present Value of Risk Margin)

8 From the above triangle calculate the Ultimate,

Risk Margin and Present Value of Risk

Margin

9 Step 5: (Output the Reserve Estimate, Ultimate,

Risk Margin and Present Value of Risk

Margin)

D. Risk Based Inflation Adjusted Chain Ladder

Method

This method is similar to the above-mentioned

method but it uses the historical inflation rate before

calculating or predicting the future claims. The

incremental run-off triangle is adjusted with the

inflation rates, keeping one as inflation index. This

method requires an appropriate inflation index to be

available for the business being considered. The

choice of index is a key to the success of reserving

using this methods. This method takes into

consideration the fact that claims inflation will affect

the payments. Once the inflation rates are taken into

consideration, it follows the same step of chain ladder

method with an additional step after predicting the

future reserves.

The Risk-Based inflation adjusted chain ladder

method is captured in Algorithm2:

Input: Input triangle in incremental form,

inflation factor

Output: Reserve estimate, Ultimate, Risk

Margin and Present value of Risk

Margin

1 Step 1: (Make adjustment to inflation):

2 The given input run-off triangle is

adjusted to inflation by applying the inflation

factors to non-cumulative data in order to get

all the claims data into monetary terms of the

recent accident year.

3 Step 2:(Find the cumulative run-off triangle)

4 Calculate the cumulative sum of the given

reserves obtained after step 1. Step 3:

(Calculate the

Development)

5 Find the development factors 1, 2,..., n 1

6 Step 4: (Estimate the future reserve):

7 Use the development factors calculated above

and used it to calculate the reserve.

8 Step 5: (Calculate new incremental reserve)

9 Dis-accumulate the data to make it incremental.

10 Step 6:(Adjust to inflation):

11 By applying inflation assumptions made for

future, the outstanding claim payments are

converted into amounts corresponding to future

years

12 Step 7:(Find the new cumulative reserve):

13 Accumulate the data

14 Step 8:(Find the Ultimate, Risk Margin and

Present Value of Risk Margin)

15 From the above triangle calculate the Ultimate,

Risk Margin and Present Value of Risk

Margin

16 Step 9: (Output the Reserve Estimate, Ultimate,

Risk Margin and Present Value of Risk

Margin)

III. PROPOSE METHOD OF PARALLELIZATION

 For our parallelization of above methods, we have

used the benefits that are being provided by the

GPU’s structure. GPU provides the platform for

computing the program parallely by executing

different number of threads at the same time. For

executing the program in GPU, it uses threads, blocks,

and grids.

A thread can be defined as the smallest unit of

program execution. A group of threads forms a block

and the group of blocks forms a Grid as depicted in

the Figure 3:

International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 2 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 70

Figure 3.Thread, Block and Grid

A. Methodology

 Let us visit the problem once again. Given the

upper triangular matrix of size NxN as shown in

Figure 4, where the cells marked blue, are non-zero,

we wish to compute the lower triangular matrix (i.e.

the cells marked green) using chain ladder method. In

the previous sections a sequential method to solve the

problem was described. However, the time taken by a

sequential program is an exponential function of the

input size N: So for a larger value of N time taken to

compute the lower triangle is very large.

 In order to complete the lower triangle, as an

intermediate step, we need to compute the

development factor (given by equation) using the

columns of the upper triangular matrix. We find that

each element of the development factor can be

computed independently. Taking this as a motivation

we designed a method to solve the problem using

CUDA. Apart from computing the lower triangular

matrix, we also computed the reserve and ultimate

using CUDA.

Figure 4.Given Matrix

1) Compute development factor: We use two

temporary arrays to store the intermediate values, let

us call them array1 and array2. Note that the size of

array1 and array2 is N-1. The array1[i] stores the sum

of all the elements in column i till the diagonal

element whereas, array2[i] stores the sum of all the

elements in the ith column like array1 but not

including the diagonal element. We assign a thread to

each element of array1 and array2. For example, in

the above figure, the size of the matrix is 6x6. Thread

0(note that thread number starts from 0 and not 1)

computes the sum of elements in column 0 i.e sum=

(R0,C0) + (R1,C0) + (R2, C0) + (R3,C0) + (R4,C0),

sum1= (R0,C0) + (R1,C0)

+ (R2, C0) + (R3,C0) + (R4,C0) + (R5, C0) and

stores it to the arrays i.e. array1[0]= sum and

array2[0]= sum1. Each thread from 0 to N-2 does the

computation simultaneously except the last thread N-

1 which only compute array2[N-1]= (R0, CN-1). We

wait for each thread to complete its part using a

CUDA keyword __syncthreads():

In order to compute the development factor, each

thread 0 to N-2 (note that thread N-1 does not

participate in this) compute its share using arrat1 and

array2. In general, thread i (0 < i < N-2) compute

dev[i]= array2[i+1]/array[i]. The idea is illustrated in

the Figure 5:

Figure 5. Computing the development factor using

threads

2) Compute the lower triangular matrix: Having

computed the development factor, our next step is to

compute the lower triangular matrix along with the

reserve, risk-margin and ultimate. We observe that

each element in the row depends only on its previous

element in that row and the development factor for

that row. Therefore, each row can be assigned to one

single thread. All the threads can execute on their part

independently. The method is illustrated in the figure

6:

Figure 6. Computation of lower triangle using threads

International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 2 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 71

3) Compute the Ultimate and Risk Margin: To

compute the ultimate, each thread assigns its last

element in its row into the ultimate array. To compute

the reserve, each thread computes copies the diagonal

element of its assigned row into the reserve array. To

compute the risk margin, each thread takes its

diagonal element and multiplies it with the risk-factor

and stores in the risk-margin array. This is

demonstrated in Figure 7.

Figure 7. Calculation of reserve and ultimate using

multiple threads

IV. RESULTS

In order the see the performance and implementation

of these parallelized methods, same available data[2]

has been used. This data was validated by experts

from the field of actuaries. The input to all the

methods are matrices, called input triangles. The

lower triangle of these matrices excluding the

diagonal elements are all zeros. The methods

mentioned in the previous sections have been used to

calculate the elements of the lower triangle. These

elements represent the future reserves that an

insurance company has to keep with them in order to

meet the future liabilities.

A. System and GPU Details

We have used the local system for the serial

implementation of the code and the CUDA

implementation has been tested on NVIDIA GeForce

TITAN X GPUs. The specifications of the system and

GPU used are given in Table I and II respectively.

Processor

Intel(R) Core(TM) i5-4670 CPU @

3.40GHz

Cores 4

Cache Size 6144 KB

CPU max MHz 3.40 GHz

Memory Size 16 GB

Table I: Cpu Details

GPU Model Nvidia GeForce TITAN X

Cudacores 3072

Clock speed 1000 MHz

TFLOPS 6.144

Effective Memory speed 7012

Memory bus 384 bits

RAM 12 GB GDDR5

Memory BW 366GB/s

Single Precision 7 TFLOPS

Double Precision 0.2 TFLOPS

CUDA toolkit CUDA v7.5

 Table II: Gpu Details

B. Results and Graphs

1) Serial Code Execution Details: We have

implemented the serial code of inflation-adjusted

chain ladder method using the c-language and got the

following timings for the different sizes of the matrix.

The serial code was executed in the local system

whose details are given in table III.

The graph shown in Figure 8 shows that as the size

of the matrix increases, the time taken by the code

increases too. Moreover time taken is an exponential

function of the input size. This motivates us to use the

accelerators such as GPUs.

Size (in 1000s) Time (secs)

3x3 21

5x5 89

10x10 711

15x15 2430.17

20x20 5578.88

25x25 10857.8

30x30 18764.33

 Table III: Serial Execution Results

Figure 8. Execution Time of Serial Risk Based Inflation

adjusted CLM

International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 2 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 72

2) Parallel Code execution Details: Seeing the

need and importance of the parallel implementation

of the Risk-based chain ladder method, we have

written the parallel code using the CUDA

programming language to run on the GPU. We have

written separate kernels for all the steps that are

parallelizable. The following table and graph show

the result of the execution of the parallel code.

Size (in
1000s)

Time
(secs)

3x3 0.5377

5x5 1.1151

10x10 3.9302

15x15 8.3403

20x20 14.8859

25x25 26.8831

30x30 43.24844

Clearly, the Figure 9 shows that the parallel code

took very less time compared to the serial code. This

is due to the use of threads and blocks. The strategies

of using them are already mentioned in the above

sections.

Figure 9: Execution Time of Parallel Risk Based

Inflation adjusted CLM

Clearly, the Figure 9 shows that the parallel code

took very less time compared to the serial code. This

is due to the use of threads and blocks. The strategies

of using them are already mentioned in the above

sections.

3) Comparison: Now we have seen both the serial

and parallel execution timings. The following figure

shows the comparison between the two results.

Figure 10: Comparison of Sequential and Parallel

Execution Time

 From the Figure 10, it is clearly evident that the

time taken by the parallel code is much much lesser

compared to the serial. This is even true for the larger

values of input size.

4) Performance Improvement: From Figure 10, it

is clearly seen that the our parallel Risk-Based

Inflation Adjusted method out performs the serial

code in terms of time taken. The following figure

shows the speed up the obtained for different sizes of

the matrix:

Size (in 1000s) Speed Up

3x3 39

5x5 80

10x10 181

15x15 293

20x20 375

25x25 404

30x30 434

 Figure 11.Speed Up

International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 2 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 73

Figure 11 shows that as the input size increases the

speed up too increases and for input size 30 the speed

up is about 440X.

V. CONCLUSION

We have developed a method to compute the

reserves, ultimate, risk margin and present value of

risk margin. However, to reduce the time taken for

computation where input size is very large, we have

developed the parallelized version for the same.

Using the high computational power of the GPU, we

have gained about 430X speed up compared to the

sequential method.

ACKNOWLEDGMENT

This work is dedicated to our Founder Chancellor

Bha-gawan Sri Sathya Sai Baba. Our sincere and

heartfelt thanks to Department of Mathematics and

Computer Science (DMACS).

REFERENCES

[1] Hans Waszink, Waszink, Considerations on the Discount Rate

in the Cost of Capital Method for the Risk Margin,

www.actuaries.org/ASTIN/Colloquia, 2013.

[2] J Bhanu Teja , Pallav Kumar Baruah , Satya Sai Mudigonda ,

and Phani Krishna Kandala, Application of High Perfor-mance

Computing for Calculation of Reserves for a Com-

pany,International Journal of Scientific and Engineering Re-

search Volume 9,2018

[3] Joshi, M.S., Graphical Asian Options,The University Of Mel-

bourne

[4] Jauvion, G. and Nguyen, T.,arallelized Tri-nomial

Option Pricing Model On GPU With CUDA,

www.arbitragisresearch.com/cuda-in-computational-finance.

[5] Mark Tucker and J. Mark Bull,Application of High

Performance Computing to Solvency and Profitability

Calculations for Life Assurance Contracts

[6] Wütrich, M.V. and Merz, M. Stochastic Claims Reservig in

Insurance Wiley,2008

[7] https://web.archive.org./web/20140327110448/http://www.soa.

org/file/pd/health/hspring07005bk.pdf

[8] Peter D England and Richard J Verrall,Stochastic claims re-

serving in general insurance, British Actuarial Journal, vol. 8,

no. 3, pp. 443–518 2002

