
International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 3 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 163

Intra-Device Transient Uninstall for

Applications in Mobile Devices

Deepak Kumar Garg1, Sunil Rathour2, Ankit Agarwal3, Nitesh Goyal4

1,2,3,4Product Research &Development Department, Samsung Research Institute

Noida, 201301, India

Abstract

 This paper describes a neoteric approach to

save the memory consumption by applications

installed by the user on mobile device. With the

massive adoption of mobile equipment by the users,

mobile device has become inevitable part of their life.

The mobile devices are being used for a variety of

business or non-business activities. With the

exponential growth in mobile devices usage, the

mobile applications usage by per user has

significantly increased that has resulted into key

issues with respect to the core device needs e.g.

storage, battery and performance. To solve all these

issues either user need to limit the usage of device or

the user need to invariably keep extending the

hardware configuration of the device. Towards such

ends there is a need to develop a system which can

save memory, enhance battery life and improve

performance of device without restricting the user

needs. For this purpose, a software based solution has

been developed in this research by exploiting the

existing technologies given by Google i.e.

BackupManager [2]& UsageStatsManager [3] for

Android OS. The proposedmechanism is called as

Intra-Device Transient Uninstall. It saves the memory

on mobile devices by managing the applications based

on their usage and their memory consumption. It has

two independent modules (1) Monitoring of Device

activity. The monitoring module identifies the device

usage based on any of the pre-determined factors – an

event of predetermined time duration, location,

operation profile of the device, storage space and time

period associated with an application. (2) Zip module.

It receives the application usage information from

monitoring module and identifies the application data

including files, databases, cache, and user data. Zip

module removes this application from package

manager after archiving the application and its data.

The application has entered to a new state called Intra

device transient uninstall. In this way, a new state of

an application is introduced and it is based on the

method of contextual & manual archiving of installed

applications/packages on AndroidTM enabled mobile

equipment for efficient memory management.

Keywords - Archive, Restore, Backup Manager,

Usage Stats Manager, Mobile Applications and

Android.

I. INTRODUCTION

 Recent computing trends have seen a drastic

increase in the market penetration of handheld

personal computing platforms (further referred as

mobile equipment). Although, advent of these devices

has solved a number of problems for the user, but it

has also given rise to a number of new challenges

regarding system design and maintenance. In today’s

scenario, availability of low cost and fast internet

connectivity on mobile equipment has enabled easy

access of downloadable mobile applications to end

user. It has resulted into a significantly higher number

of applications being installed on current generation of

mobile equipment as compared to those of previous

generations, leading to increasedinternal memory

consumption of mobile equipment.This has become a

major concern in memory management for OEMs and

other software providers.

Most of the available solutions for managing

storage space in mobile devices are often cumbersome

and complex to use for the general masses. Thus, there

exists a need for a solution to overcome the

aforementioned deficiencies.

Intra Device Transient Uninstall is based on

contextual and manual archiving mechanism. It

includes a monitoring module which analyses the

current device usage, events (based on time & location)

and device state (e.g. memory, battery etc.). This

module determines the unused/sparsely used

applications/packages based on the context and inputs

them to zip module which includes a method to

archive the given applications/packages after creating

backup of its byte code and associated data.

This paper explains two modules of contextual and

manual archiving of packages/applications i.e. device

usage monitoring module and zip module. The

techniques along with the components used have been

described in detail, giving complete technical and

logical insight of the methodology for each of the

modules. Towards the end, results received from

Samsung QA team and accuracy of the system is

explained which helps evaluating the goodness of the

proposed approach and obtained results.

II. PROBLEM

 The low storage space in the mobile devices

often affects overall performance of the device. For

instance, an operating system of the device and

process related thereto consumes a significant portion

International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 3 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 164

of the storage space in the device. In addition a user

may download numerous applications and may store

user content, such as multimedia files, documents, and

the like, in the storage space thereby further

consuming the storage space. Thus, limited storage

space is available for carrying the tasks and operations

related to the device. This increases the load on the

processor and significantly impacts device

performance. For instance, a delay in loading

applications and executing new tasks is observed,

resulting in sluggish and delayed performance, heating,

and high battery drain in the device. Further, the

limited storage space causes user to uninstall

applications and/or delete/move user content from

time to time to make space for new applications and

new user content.

As mobile operating systemshave moved towards

more complex and evolved user experience, ithas led

to increased processing and on-board memory

requirements.Thisputs mobile equipment

manufacturers (OEMs)in a challenging position to

provide hardware equipped with higher configuration

at a competitive rate in the market. In order to fulfil

the above laid requirements, the mobile storage

capacity has become one of the most criticalhardware

parameter for OEMs.As OEMs try to cope up with the

situation by increasing the device configuration, it has

been observed that in average user scenario, it doesn’t

match up to the market requirements, because,

frequent software updates regularly outpace the OEM

hardware enhancements.

As the number of applications per device has

increased, average use time per application has gone

down. The general application usage pattern sees a

small set of applications being a frequent interaction

target, leaving the restto be launched veryrarely

(usually the interaction frequency drops down to once

a week or month and so on). Thissecondset of

applications consumes device memory, battery,

mobile data and other resources via background

processes even when they serve no direct purpose to

the user within that timeframe.

To manage this infrequently accessedapplication

set,the AndroidTM Operating system provides various

functionalities, viz. Disable, Clear Data and Uninstall.

Disable operation disables all the application/package

components, removes user data and uninstalls

application/package updates. Clear Data operation

clears all user data and application/package gets reset

to its default settings. Uninstall operation uninstalls

the application/package from device and all associated

data and bytecode gets removed from the device.

All the abovelisted options,cause loss of user data

and settings which brings us to our problem statement:

“To find a memory management technique which

retains application and its associated data while still

reducingmemory consumption, thus, enablingmore

efficient allocation of system resources.”

III. CONCEPT

 Intra-Device Transient Uninstall, a new state (as

shown in Fig. 1) for the applications in device is

proposed, which offers memory saving on the device

by managing the applications based on contextual and

manual archiving of packages without losing user data.

Fig. 1. The proposed state flow for an application

 The proposed system as shown in Fig 2 has two

modules: monitoring the device usage, zip module.

The monitoring unit identifies the applications based

on the device usage data and on the pre-determined

factors. Thereafter, it inputs the applications to zip

module which archives the application and its data and

converts them to an executable archive file and a user

data file.

IV. METHODOLOGY - DEVICE USAGE

MONITORING MODULE

 This part mainly focuses on real implementation

of the proposed system. The system has been divided

into two separate modules, device usage monitoring

module and zip module. This implementation is

carried out in controlled environment keeping track of

all the variables and possibilities in real scenarios.

Fig. 2. Intra-Device Transient Uninstall

 The monitoring module identifies the device

usage based on any of the predetermined factors – an

event of predetermined time& predetermined duration,

location, operation profile of the device, storage space,

battery status and time period associated with an

application.

Install

Intra-Device

Transient Uninstall

Uninstall

Monitoring

Module

Zip Module

Storage Manager

Usage Stats Manager

Zipped

Application

s

Package Manager

Intra Device Transient

Uninstall Engine

International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 3 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 165

A. Implementation Approach

 Various use cases are figured out to implement

this module. As an example, for a sporting event, the

application(s) least accessed during the last occurrence

of the sporting event are identified. In another

example, the applications least accessed based on a

location of the device are identified. For instance,

when a user is at his workplace, the applications least

accessed by the user (social media applications) are

identified. In yet another example, the applications are

identified based on a time when the application was

last run. For instance, applications that were run more

than two weeks ago may be identified. In another

example, the applications requiring maximum storage

space may be identified based on the storage space

requirement corresponding to the application.

Fig 3. Architectural model of device usage Monitoring Unit

The architectural model of this module is

represented in Fig. 3. The Event Listener shall get the

events from Android system components such as

Calendar Provider [4], Power Manager, Location

Manager, Usage Stats Manager [3] and Storage

Manager Etc. by listening to their broadcasts/callbacks,

store the data to the database and notify System

Analyzer about it. The system analyzer is solely

responsible for making a decision based on the events

data retrieved from database to send a request

containing an action ZIP/UNZIP with the packages

list to Zip module.

B. System Components

This module was build using the following fine

grainedcomponents. Each component along with its

purpose is described below.

1. Event Listener

 In order to analyze the system usage,this system

needs to retrieve the data corresponding to the events

associated. This is done by Event Listener by

registering to the system components like Power

Manager, Calendar Provider [4], Usage stats Manager

[3], Location Manager and Storage Manager Etc. and

receive the broadcasts/callbacks and save it to the

database. On saving the event data to the database, it

sends a signal to the System Analyzer component to

perform the analysis on data.

2. System Analyzer

 This component retrieves the databy performing

pre-defined queries on the events database. It finds out

the relation between the different datasets retrieved

and makes a decision whether to request or not for an

action (ZIP/UNZIP) on certain packages to Zip

module.

V. METHODOLOGY - ZIP MODULE

 This part address the implementation techniques

used tobuild the Zip module. Zipping/Unzipping the

packages is done using Android system components

Package Manager and Backup Manager [2]. The

implementation details of the modules are as under.

A. Implementation Approach

 This module receives the request containing

packagelist along with the action(i. e. ZIP, UNZIP)

from monitoring unit. After receiving the package list,

this module identifies all the package information

available on the device, creates a backup request [1]

that includes Boolean variables for various kind of

package files and sends it to the Backup Manager.

After receiving the callback of success or failure, it

updates the information in the database. If it has

received the success, it will uninstall the application

and notify it to the Package Manager. If it has

received the failure, it will simply notify the user

about the failure.

Fig. 4 Zip Module workflow

The architectural model of this module is shown in

Fig. 5. The Zip module receives package names and

inputs it to Package Scanner module. Package scanner

sends the request for zip/unzip to Zip Processor/Unzip

processor to complete the respective action. Both of

these processor units makes use of Backup Manager

Package names Request

Identifying the action Files processing

Compression/

Decompressio

n

Backup/

Restore

Package Archived/

Restore

Files

Location

To Zip

Module

Zip

Unzip

Text

Calendar

Provider

Location

Manager

UsageSt

ats

Manager

Device usage Monitoring Unit

Power

Manager

System

Analyzer

Event

Listener

Storage

Manager

Events

Database

International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 3 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 166

services-Archive Service, Restore Service to either

archive or restore the requested package.

Fig. 5 Architectural model of Zip Module

An installed Android application has well defined

directory structure that maintains a modular

segregation of byte code and associated data. While

archiving an application, the performance critical

application components are identified according to

rules listed in Table 1.The components listed for

archivingare compressed along with their relative path

information and savedintoa single backup fileas.ab (i.e.

android backup) file type. While performingRestore

operation, all these files are restored to their original

locations.

Table 1. Android Application files on the Device

File Type Description

Manifest file Application manifest

Meta data file Application meta data

Apk file Application byte code

Cache file Internal cached data

Database files SQLite database file

Shared preferences User settings file

Asset files Asset files required by

application

External cache files External cache data

External obb files Application expansion files

B. System Components

 This module was built upon the interaction

between newly defined components and modified

existing Android OS components to do the required

task. Each component along with its purpose is

described below.

1. Package Scanner

 This component identifies theperformance

critical components of the requested package as

described in Table 1 and declares the rules to include

or not the components based on the application usage

and device state like available storage, battery level

etc.

2. Zip Processor

 It processes the zip requests of

multiplepackages by concurrent task scheduling. To

zip each package, it sends a request along with

package name and archive rule set to Archive service

of Backup Manager [1], [2]. After archive completion,

it receives a response from Archive service and it

sends a request to uninstaller to uninstall the package

and upon receiving a success result, it updates the data

to database.

3. Archive Service

 This component is a part of Backup Manager [2]

and is modified to handle the archiving of packages

based on the rule set sent by Zip Processor. It requests

Compressor to compress the said components of

package along with their relative paths and then saves

them into a single archive file in .ab format and sends

a success response to zip processor.

4. Unzip Processor

 It processes the unzip requestofmultiple

packages by concurrent task scheduling. It sends a

request to Restore Service of Backup Manager [1], [2]

for unzipping the requested package. Upon receiving a

success result, it updates the data in database.

5. Restore Service

 This service is modified to restore ofthe package

components from .ab file, install the application and

save the files to their respective locations in the

system.It uses Decompressor module to retrieve the

data from .ab file.

VI. RESULTS

We have observed that the compression ratio for

each applicationvaries depending on its components

(byte code and data). However, after testing with an

experimental set of more than 100 applications

installed across a variety of AndroidTM enabled

equipment, it was found that proposed method of

application compression and archiving results in an

average 40% reduction in cumulative memory usage.

As per market reports, free memory available in

mid end or inferior devices (8 GB or 16 GB storage)

remains critically low. For example, experimental data

collected with Galaxy J2 2016 model (containing only

preloaded software with latest updates)shows that only

0.94 GB of free memory is available out of 8GB total

device storage.

The applicationdeveloped for Samsung Galaxy J

series implementsIntra Device Transient Uninstall

mechanism. As shown in Fig. 6, the applications,

which are in archived state, are displayed in Zipped

apps folder with greyed icons.

Zip Module

Backup Manager

Unzip

Processor

Package Manager

Package

Scanner

Database

Decompressor

.ab files

Zip Processor

Compressor

Archive Service

Restore Service

Uninstaller

International Journal of Engineering Trends and Technology (IJETT) – Volume 65 Number 3 - November 2018

ISSN: 2231-5381 http://www.ijettjournal.org Page 167

Fig. 6. Application Screen – Zipped Apps

Tests performed by Samsung QA indicate that this

implementationresults in a cumulative memory usage

reduction of more than 60% while testing with 5

applications* as listed in Table 2.

Table 2. Test results by Samsung QA Team

 Before

Archiving

After

Archiving

Total Memory on device 8 GB 8 GB

FreeMemory on device 1.48 GB 1.66 GB

Total Application* size 294.7 MB 113.2 MB

Memory Saved 181.5 MB

(61.6 %)

*Applications installed: App1 [80.7 MB], App2 [43.3

MB], App3 [47.7 MB], App4 [101.1 MB], App5 [21.9

MB].

VI. CONCLUSION

 This methodology has significant impact on

devices where available memory has reached critically

low level due to large number of installed applications.

User can archiveinfrequently accessed applications to

release a fraction of occupied memory. The same

mechanism can be replicated in all the mobile

operating systems.

REFERENCES

[1] WojtekKaliciński. Auto Backup for Apps made simple.

https://android-developers.googleblog.com/2015/07/auto-

backup-for-apps-made-simple.html (2015).

[2] Backup Manager.

https://developer.android.com/reference/android/app/backup/

BackupManager.html

[3] Usage Stats Manager.

https://developer.android.com/reference/android/

app/usage/UsageStatsManager

[4] Calendar Provider.

https://developer.android.com/guides/topics/

providers/calendar-provider

