Synthesis of Proton Exchange Membranes from Acrylic Ester and Styrene Resin

    International Journal of Engineering Trends and Technology (IJETT)          
© 2014 by IJETT Journal
Volume-7 Number-1                          
Year of Publication : 2014
Authors :Yilmar Maza Puerta , Alvaro Realpe Jiménez , María Acevedo Morantes


Yilmar Maza Puerta, AlvaroRealpe Jiménez,María Acevedo Morantes Article:  Synthesis of Proton Exchange Membranes from Acrylic Ester and Styrene Resin,International Journal of Engineering Trends and Technology (IJETT), V7(1):1-4;January 2014. Published by Seventh Sense Research Group.

In this work, an styrene-acrylic ester copolymer resin was used to synthesize proton exchange membranes for its application in fuel cells. The properties of these membranes were modified by the sulfonation reaction at different times. Furthermore, the water uptake, ion exchange capacity and mechanical properties were measured. Sulfonated membrane during 3 h exhibited high water uptake and proton exchange, 38.10% and 0.24 meq/g, respectively; while unmodified membranes exhibits low water uptake and proton exchange, 16.08% and 0.1 meq/g respectively. Moreover, elasticity of the membrane increases with increasing the sulfonation reaction time due to the introduction of sulfonic groups into the polymer chain. The properties of membranes confirm the possibility of its use as a proton exchange membrane.


[1] Mayandía, A. (2009). Descripción y modelado de una pila de combustible de membrana de intercambio protónico. Tesis de pregrado. Universidad Carlos III de Madrid - Escuela Politécnica Superior – Madrid, España.

[2] Janssen, G., et al., “Proton-exchange-membrane fuel cells durability evaluated by load-on/off cycling”. Journal of Powder Sources, 191, 2009, 501-509.

[3] Bai, Z., et al., “Proton conductivity and properties of sulfonatedpolyarylenethioethersulfones as proton exchange membranes in fuel cells”. Journal of MembraneScience, 281, 2006, 508-516.

[4] Mosa, J., et al., “Membranas híbridas basadas en estireno-metacrilato-sílice y ácido fosfo-wolfrámico obtenidas por sol-gel para pilas de combustible de intercambio protónico (PEMFC)”. Boletín De La Sociedad Española De Cerámica Y Vidrio, 46, 2007, 267-262.

[5] Hogarth, W., et al., “Solid acidmembranesforhightemperature (>140 ºC) protonexchangemembrane fuel cells”. Journal of Powder Sources, 142, 2005, 223-237.

[6] Romero, A., et al., “Synthesis and characterization of proton exchange membranes from blend of unsaturated polyester resin and natural rubber”. International Journal of Engineering Trends and Technology, 4(9), 2013, 4005 – 4009.

[7] Wang, J., et al., “Enhancing proton conduction and methanol barrier performance of sulfonated poly(ether ether ketone) membrane by incorporated polymer carboxylic acid spheres”. Journal of Membrane Science, 364, 2010, 253–262.

[8] Shahi, V. “Highly charged proton-exchange membrane: Sulfonatedpoly(ether sulfone)- silica polyelectrolyte composite membranes for fuel cells”. Solid State Ionics, 177, 2007, 3395–3404.

[9] M. Amjadi, et al., “Investigation of physical properties and cell performance of Nafion/TiO2nanocomposite membranes for high temperature PEM fuel cells”, International Journal of Hydrogen Energy, vol. 35, 2010, 9252–9260.

[10] Barbora, L., et al.,“Synthesis and Ex-situ Characterization of Na?on/TiO2 Composite Membranes for Direct Ethanol Fuel Cell”. Macromol. Symp. 277, 2009, 177–189.

[11] Shang, X., et al.,“Synthesis and characterization of sulfonatedfluorene-containing poly(arylene ether ketone) for proton exchange membrane”. Journal of Membrane Science, 266, 2005 94–101.
[12] Bograchev, D., et al., “Stress and plastic deformation of MEA in fuel cells”. Journal of Power Sources, 80, 2008, 393–401.

Keywords: Proton exchange membrane, acrylic ester and styrene, sulfonation.