Graphene Based Planar VLSI Interconnects

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
© 2015 by IJETT Journal
Volume-22 Number-6
Year of Publication : 2015
Authors : Praggya Agnihotry, R.P.Agarwal
DOI :  10.14445/22315381/IJETT-V22P253


Praggya Agnihotry, R.P.Agarwal"Graphene Based Planar VLSI Interconnects", International Journal of Engineering Trends and Technology (IJETT), V22(6),253-254 April 2015. ISSN:2231-5381. published by seventh sense research group

Recently graphene nano-ribbon is a strong candidate for future VLSI interconnects systems. Cu interconnect systems were used in past but as technology node decreases the above interconnect system faced many problems. The VLSI interconnects which are mainly used at high frequencies or in nano-scale region are planar interconnects (GNR) and nonplanar interconnects (CNT). This paper review the published research work related to graphene based planar VLSI Interconnects.


[1] T. J. Echtermeyer, M. C. Lemme, M. Baus, B. N. Szafranek, A. K. Geim, and H. Kurz, Nonvolatile Switching in Graphene Field-Effect Devices, IEEE Electron Device Lett., vol. 29, no. 8, pp. 952-954, Aug.2008.
[2] M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz ?A Graphene Field-Effect Device,? IEEE Electron Device Lett., vol. 28, no. 4, pp.282-284, Apr. 2007.
[3] Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo, Comparison of performance limits for graphene nanoribbon and carbon nanotube transistors, Appl. Phys. Lett., vol. 89, no. 20, pp. 203 107-1–203 107-3, Nov. 2006.
[4] L. Gengchiau, N. Neophytos, D. E. Nikonov, and M. S. Lundstrom, Performance projections for ballistic graphene nanoribbon field-effect transistors, IEEE Trans. Electron Devices, vol. 54, no. 4, pp. 677–682, Apr. 2007.
[5] D. Gunlycke, H. M. Lawler, and C. T. White, Room-temperature ballistic transport in narrow graphene strips, Physical Review B, vol.75, no. 8, pp. 085418-1- 085418-5,Feb. 2007.
[6] O. Roslyak, G. F. Gumbs, and D. Huang, Tunable band structure effects on ballistic transport in graphene nanoribbons, Phy. Lett. A, vol.374, pp. 4061–4064, Apr. 2010.
[7] S. Bhattacharya and S. Mahapatra, Negative differential conductance and effective electron mass in highly asymmetric ballistic bilayer graphene nanoribbon, Phys. Lett. A, vol. 374, no. 28, pp.2850–2855,May 2010.
[8] R. Murali, K. Brenner, Y. Yang, T. Beck, and J. D. Meindl , Resistivity of Graphene Nanoribbon Interconnects,” IEEE Electron Device Lett., vol. 30, no. 6, pp. 611-613, Jun. 2009.
[9] A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mat., vol. 6, no. 3,pp. 183–191,Mar. 2007.
[10] M. Y. Han, B. Ozyilmaz, Y. B. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Physical Review Letters, vol. 98, p. 206805, May 2007.
[11] D. Pribat and Y. H. Lee, Carbon nanotubes and graphene for various applications in electronics: competition and synergy, IEEE Technology Time Machine Symposium on Technologies Beyond 2020 (TTM), pp. 1-2, 1-3, June 2011.
[12] W. J. Yu, S. Y. Lee, S. H. Chae, D. Perello, G. H. Han, M. Yun, and Y.H. Lee, Small hysteresis nano carbon-based integrated circuits on flexible and transparent plastic substrate, Nano Lett., vol. 11, pp. 1344,Feb.2011.
[13] W. J. Yu, S. H. Chae, S. Y. Lee, D. L. Duong, and Y. H. Lee, Ultra transparent flexible single-walled carbon nanotube non-volatile memory device with oxygen-decorated graphene electrode, Adv. Mater., vol. 23,pp. 1889, Apr.2011.
[14] M. Terrones, Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons, ACS Nano, vol. 4, p. 1775,Apr.2010.
[15] T. Ragheb and Y. Massoud, On the Modeling of Resistance in Graphene Nanoribbon (GNR) for Future Interconnect Applications, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD 2008), pp.593-597, Nov. 2008.
[16] A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., vol. 8, no. 3, pp. 902–907, Mar. 2008.
[17] C. Xu, H. Li and K. Banerjee, Graphene nanoribbon (GNR) interconnects: A genuine contender or a delusive dream? IEEE International Electron Devices Meeting, IEDM 2008, pp. 1-4, 15-17 Dec 2008.
[18] C. Xu, H. Li, and K. Banerjee, Modeling, analysis, and design of graphene nanoribbon Interconnects, IEEE transactions on electron devices, vol. 56, no. 8, pp. 1567-1578, Aug. 2009.
[19] M. S. Sarto and A. Tamburrano, Comparative analysis of TL models for multilayer graphene nanoribbon and multi wall carbon nanotube interconnects, Int. Symp. EMC, pp. 212-217, 2010.
[20] D. Sarkar, C. Xu, H. Li, and K. Banerjee, High-frequency behavior of graphene-based interconnects—Part II: Impedance analysis and implications for inductor design, IEEE Trans. Electron Devices, vol. 58, no. 3, pp. 853– 859, Mar. 2011.
[21] V. Kumar, S. Rakheja and A. Naeemi, Modeling and optimization for multilayer graphene nanoribbon conductors, IEEE International Technology Conference 2011 and Materials for advance metallization (IITC/MAM), pp. 1-3, 8-12 May 2011.
[22] S. Haji Nasiri, M. K. Moravvej-Farshi and R. Faez, Time Domain Analysis of Graphene Nanoribbon Interconnects Based on Transmission Line Model, Ira. Jour. of Elect. & Electro.Engi., Vol. 8,pp.37-44, Mar.2012.
[23] Y. Fang, W. Zhao, X. Wang, F. Jiang, and W. Yin, Circuit modelling of multilayer graphene nanoribbon (MLGNR) interconnects, in IEEE Conference (APEMC), 2012 Asia-Pacific Symposium,pp. 625 – 628,MAY 2012.
[24] M. K. Majumdar, N. Reddy K., B. K. Kaushik, and S. K. Manhas, Comparison of propagation delay in single and multi-layer graphene nanoribbon interconnects 2012 5th International conference on computers and devices for communication (CODEC), pp. 1-4, 17-19 Dec. 2012.
[25] N. Reddy K., M. K. Majumdar, B. K. Kaushik, S. K. Manhas and B. Anand, Dynamic crosstalk effect in multilayer graphene nanoribbon interconnects, 2012 International conference on communication, devices and intelligent systems (CODIS), pp. 472-475, 28-29 Dec.2012.
[26] S. Rakheja, and A. Naeemi, Graphene nanoribbon spin interconnects for nonlocal spin-torque circuits: comparison of performance and energy per bit with CMOS interconnects, IEEE Transactions on Electron Devices, vol. 59, no. 1, pp. 51-59, Jan. 2012 .
[27] J. P. Cui, W. S. Zhao, and W. Y. Yin, Signal Transmission Analysis of Multilayer Graphene Nano-Ribbon (MLGNR) Interconnects, IEEE Trans. Electromagnetic Compatibility, vol. 54, no. 1, pp.126-132, Feb. 2012.
[28] Behnam, Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition, Nano Lett. 12(9),pp. 4424–4430,2012 .
[29] S. Bhattacharya, S. Das, D. Das, Analysis of Stability in Carbon Nanotube and Graphene nanoribbon Interconnects, International Journal of Soft Computing and Engineering (IJSCE), vol. 2, no. 6, pp. 325-329, Jan. 2013.
[30] A. Maffucci, and G. Miano, Number of Conducting Channels for Armchair and Zig-Zag Graphene Nanoribbon Interconnects, IEEE Trans. Nanotechnology, vol.12,no.5,pp.817-823,Sep.2013
[31] S. Rakheja, V. Kumar, and A. Naeemi, Evaluation of the potential performance of graphene nano-ribbons as on-chip interconnects,? contributed paper, proceedings of IEEE, vol. 101, no.7, pp. 1740-1765, July 2013.
[32] A.Hassan, T. Nandy, M.I. Abedin, A. Islam, and A. Dutta, Resonant Frequency Analysis of Graphene Nanoribbon Based VLSI Interconnect Syste”, 8th International Conference on Electrical and Computer Engineering,pp.156-159, 20-22 Dec. 2014.
[33] I.F.P. Nesamani, R. P. Divakaran,V.L.Prabha ,M.B.Sujith , Source Drain Engineering in FinFET – A Review, International Journal of Engineering Trends and Technology (IJETT), vol.8,no.9,Feb.2014.
[34] V.Sharma, and R. P. Agarwal, MLGNR interconnects with finfet driver: optimized delay and power performance for technology beyond 16nm, International Journal of Research in Engineering and Technology(IJRET),vol.3,no.9,pp.117-123,Sep.2014.

Interconnect, Graphene Nano-ribbon, Single wall CNT, Multi wall CNT, Multi layer GNR.