Optimization in Electric Discharge Machining of D2 Steel with Multiple Surface Rough nesses Characteristics with the Help of Tool Produced By Rapid Prototyping by Hybrid Taguchi Method

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
© 2016 by IJETT Journal
Volume-39 Number-5
Year of Publication : 2016
Authors : Saumya DarsanMohanty, Siba SankarMahapatra, Ramesh Chandra Mohanty
DOI :  10.14445/22315381/IJETT-V39P250


Saumya DarsanMohanty, Siba SankarMahapatra ,Ramesh Chandra Mohanty"Optimization in Electric Discharge Machining of D2 Steel with Multiple Surface Rough nesses Characteristics with the Help of Tool Produced By Rapid Prototyping by Hybrid Taguchi Method", International Journal of Engineering Trends and Technology (IJETT), V39(5),297-305 September 2016. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group

The present study highlights a multi-objective optimization problem by applying utility concept coupled with Taguchi method through a case study in Electric Discharge Machining of D2 Steel by using Electrode produced by Direct Metal Laser Sintering using Directmetal20. The study aimed at evaluating the best process environment which could simultaneously satisfy multiple Surface Roughness requirements. As traditional Taguchi method cannot solve a multi-objective optimization problem; Taguchi’s Lower-the-Better (LB) criteria; individual response characteristics has been transformed into corresponding utility values. Individual utility values have been added finally to compute overall utility degree which serves as representative objective function for optimizing using Taguchi method. The study combined utility theory and Taguchi method for predicting optimal setting. Optimal result was verified through confirmatory test. This indicates application feasibility of the aforesaid methodology proposed for multi-response optimization in Electric Discharge Machining.


[1] Arthur A, Dickens, PM (1995) Rapid prototyping of EDM electrodes by stereolithography. In: Proceedings of the International Symposium for Electromachining (ISEM XI), 17–20 April 1995, Lausanne, Switzerland: 691–699.
[2] Alan Arthur, Phillip Michael Dickens and Richard Charles Cobb, 1996, “Using rapid prototyping to produce electrical discharge machining electrodes”, Rapid Prototyping Journal Volume 2 · Number 1, 1996, pages 4–12.
[3] Stucker BE, Bradley WL, Norasettekul S, Eubank PT (1996) The production of electrical discharge machining electrodes using SLS preliminary results. Solid Freeform FabrSymp.: 278– 286.
[4] Bocking CE, Bennett GR, Dover SJ, Arthur A, Cobb RC, Dickens PM (1997) GEC J Technol 14(2):66
[5] H. Durr, R. Pilz, N.S. Eleser, Rapid tooling of EDM electrodes by means of selective laser sintering, Comput. Ind. 39 (1999) 35– 45.
[6] Zaw HM, Fuh JYH, Nee AYC, Lu, L. (1999) Formation of a new EDM electrode material using sintering techniques. J Mater Process Technol 89–90: 182–186.
[7] F. E. H. Tay and E. A. Haider, 2001,“The Potential of Plating Techniques in the Development of Rapid EDM Tooling”, International Journal of Advanced Manufacturing Technology (2001) 18, pages 892–896.
[8] Li L, Wong YS, Fuh JYH, Lu L (2001) Mater Design 22:669 [9] D. King & T. Tansay, 2003, “Rapid tooling: selective laser sintering injection moulding”, Journal of Material Processing Technology 132(2003) 42-48.
[10] Stucker BE, Qu X (2003) Rapid Prototyping J 9(4):194.
[11] Zhao J, Li Y, Zhang J, Yu C, Zhang Y (2003) Analysis of the wear characteristics of an EDM electrode made by selective laser sintering. J Mater Process Technol 138: 475–478.
[12] Dimla DE, Hopkinson N, Rothe H (2004), “Investigation of complex rapid EDM electrodes for rapid tooling applications” Int J AdvManuf Technol. 23: 249–255.
[13] Shankar Singh, S. Maheshwari& P.C. Pandey ,2004, “Some investigations into the electric discharge machining of hardened tool steel using different electrode materials”, Journal of Materials Processing Technology 149 (2004), pages 272–277.
[14] Meena VK, Nagahanumaiah (2006) Rapid Prototyping J 12(4):222 [15] Jose Carvalho Ferreira, Artur S. Mateus, Nuno F. Alves (2007) ?Rapid tooling aided by reverse engineering to manufacture EDM electrodes„, Int. Journal of Advanced Manuf. Technol. 34: 1133– 1143.
[16] John Kechagias, VassilisIakovakis, ManolisKatsanos, StergiosMaropoulos (2008) EDM electrode manufacture using rapid tooling: a review. J Mater Sci 43: 2522–2535.
[17] Hsu, CY, Chen, DY, Lai, MY, Tzou, GJ (2008), “ EDM electrode manufacturing using RP combining electroless plating with electroforming”, Int J AdvManufTechnol 38: 915–924.
[18] J. Czyz? ewski, P. Burzyn´ ski, K. Gawe?, J. Meisner, 2009, “Rapid prototyping of electrically conductive components using 3D printing technology”, Journal of Materials Processing Technology 209 (2009) 5281–5285
[19] E. Ferraris, D. Reynaerts& B. Lauwers, 2011, “Micro-EDM process investigation and comparison performance of Al3O2 and ZrO2 based ceramic composites”, CIRP Annals - Manufacturing Technology 60 (2011) 235–238.
[20] F.L. Amarim, A. Lohrengel, N. Miller, G.Schafer, T. Czelusniak, “Performance of sinking EDM electrodes made by selective laser sintering technique”, Int J AdvManufTechnol (2013) 65: 1423-1428.
[21] Alauddin, M., Baradie, M.A.El and Hashmi, M.S.J. (1996) „Optimization of surface finish in end milling INCONEL 718?, Journal of Materials Processing Technology, Vol. 56, pp.54-65.
[22] Fuh, K.H. and Wu, C.F. (1995) „A Proposed Statistical Model for Surface Quality Prediction in End-Milling of Al alloy?, International Journal of Machine Tools & Manufacture, Vol. 35, pp.1187-1200.
[23]Kumar, P., Barua, P. B. And Gaindhar, J. L., 2000, Quality Optimization (Multi-Characteristics) Through Taguchi?s Technique and Utility Concept, Quality and Reliability Engineering International, 16, 475-485.

Multi-objective optimization; utility concept; Taguchi method; Electric Discharge Machining, Direct Metal Laser Sintering.