Electrical and Structural Transport characteristics of Ni/Ti Schottky contacts to ntype Indium Phosphide (InP)

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
© 2017 by IJETT Journal
Volume-47 Number-3
Year of Publication : 2017
Authors : Nagaraj M K, Y. Munikrishna Reddy
DOI :  10.14445/22315381/IJETT-V47P230


Nagaraj M K, Y. Munikrishna Reddy "Electrical and Structural Transport characteristics of Ni/Ti Schottky contacts to ntype Indium Phosphide (InP)", International Journal of Engineering Trends and Technology (IJETT), V47(3),183-186 May 2017. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group

This article mainly studies about the current transport mechanism of Ni/Ti bilayer contact on n-InP Schottky barrier Diode. At ?1 V, the reverse leakage current of the as-deposited Ni/Ti Schottky contact is 8.829×10-10A. For contacts annealed at 200 ?C, 300 ?C and 400 ?C, the reverse leakage current increases. The corresponding values are 1.111 X 10-9, 1.329 X 10-9 and 1.649 X 10-9A at - 1 V. The investigated value of SBH of the asdeposited Ni/Ti Schottky contact is 0.81 eV. On observation, it is found that there is decrease of SBH for contacts annealed at 200 ?C and 400 ?C. At the same time, the relevant values are 0.80 eV, 0.79 eV and 0.78 eV, respectively. The calculations show that 0.85 eV is the SBH of as-deposited ni/Ti//n-InP Schottky diodes. The same are 0.83 eV at 200 ?C and 0.79 eV at 400 ?C annealed contacts respectively. It is observed that the as-deposited Ni/Ti/n-InP contact has the highest SBH as compared to SBH of annealed contacts. Also, these values are in good agreement with the values arrived from the I-V method. The annealing effects on electrical and structural properties are employed for this study.


[1] E.H. Roderick, T.H. Williams, Metal-Semiconductor Contacts, Oxford, 1988.
[2] M.S. Tyagi, Introduction to Semiconductor materials and Devices, New York: John Wiley, 1991.
[3] T.P. Chow, R. Tyagi, Wide Bandgap Compound Semiconductors for Superior High Voltage Unipolar Power Devices, IEEE Trans. Electron. Dev. 41 (1994) 1481-1486.
[4] J.L. Freeouf and J.M. Woodall, Schottky barriers: An effective work function model, Appl. Phys. Lett., 39 (1981) 727-729.
[5] Y. Sun, X.M. Shen, J. Wang, D.G. Zhao, G. Feng, Y. Fu, S.M. Zhang, Z.H. Zhang, Z.H. Feng, Y.X. Bai and H. Yang, Thermal annealing behaviour of Ni/Au on n-GaN Schottky contacts , J. Phys. D: Appl. Phys., 35 (2002) 2648-2653.
[6] J.Y. Duboz, F. Binet, N. Laurent, E. Rosencher, F. Scholz, V. Harle, O. Briot, B. Gil and R.L. Aulombard, Influence of Surface Defects on the Characteristics of GaN Schottky Diodes, Mater. Res. Soc. Symp. Proc., 449 (1996) 1085- 1089.
[7] T. Sands, Stability and epitaxy of NiAl and related intermetallic films on III?V compound semiconductors, Appl. Phys. Lett. 52 (1988) 197-201.
[8] H. Dogan, N. Yildirim and A. Turut, Thermally annealed Ni/n-GaAs(Si)/In Schottky barrier diodes, Microelectron. Eng., 85 (2008) 655-658.
[9] H.S. Soliman, A.A.M. Farag, N. M. Khosifan and T. S. Solami, Electronic and photovoltaic properties of Au/pyronine G(Y)/p-GaAs/Au:Zn heterojunction, J. Alloys Compd., 530 (2012) 157-163.
[10] A. Klein, F. Sauberlich, B. Spath, T. Schulmeyer and D. Kraft, Non- stoichiometry and electronic properties of interfaces,J. Mater. Sci, 42 (2007)1890-1900.
[11] V. Lakshmi Devi, I. Jyothi, V. Rajagopal Reddy and C.-J. Choi, Schottky Barrier Parameters and Interfacial Reactions of Rapidly Annealed Au/Cu Bilayer Metal Scheme on N-type InP, Open Appl. Phys. J., 5 (2012) 1-9.
[12] H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance, J. Appl. Phys., 50 (1979) 5052- 5053.

Schottky barrier Diodes; Ni/Ti/n-InP; I-V Studies; XRD analysis.