Convectional stability of thermohaline fluid in solar pond under vertical magnetic field

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
© 2017 by IJETT Journal
Volume-49 Number-2
Year of Publication : 2017
Authors : Anoop Kumar, Surjeet Singh, V. Kanwar
DOI :  10.14445/22315381/IJETT-V49P212


Anoop Kumar, Surjeet Singh, V. Kanwar "Convectional stability of thermohaline fluid in solar pond under vertical magnetic field", International Journal of Engineering Trends and Technology (IJETT), V49(2),71-77 July 2017. ISSN:2231-5381. published by seventh sense research group

In the present paper, we study working of solar pond and discussed the principle of exchange of stability with reference to boundary conditions of a solar pond with lower boundary rigid and upper boundary dynamically free and there is continuous vertical upward magnetic field knows as generalized magnetohydrodynamicBérnard convection problem in the case when Lewis number not equal to zero, means there are both thermal as well as solute (salt) diffusion.


[1] Tabor H and Matz R: “Solar pond project", Solar energy 9(1965), 177-180.
[2] Shirtcliffe TGL: “Lake Bonney Antarctica: Cause of the elevated temperature", J. Geo-Physics Research 69(24) (1964), 5257 - 5268.
[3] G. Veronis: “On finite amplitude instability in thermohaline convection", J. Mar. Res., 23 (1965), 1-17.
[4] M. B. Banerjee: “Thermal instability of non-homogeneous fluids” A mathematical theory", Indian J. Pure Appl. Math., 2(1971), 257-260.
[5] D. C. Katoch: “On infinitesimal amplitude instability in thermal and thermohaline con-vection", Ph. D. thesis, H. P. University, Shimla, India, (1981).
[6] M. B. Banerjee, J. R. Gupta, R. G. Shandil, K. C. Sharma and D. C. Katoch: “A modified analysis of thermal and thermohaline instability of a liquid layer heated underside", J. Math. Phys. Sci., 17 (1983), 603-629. J. Math. Phys. Sci., 22 (1988), 457-474.
[7] Joginder S. Dhiman, Praveen K. Sharma and PoonamSharma: “On the stationary convection of thermohaline problems of Veronis and Stern types", Applied Math.,1 (2010), 400-405.
[8] S. Chandrasekhar: “Hydrodynamic and Hydromagnetic Stability", Dover Publications, Inc. New York (1981).
[9] N. Rani and S. K. Tomar: “Double-diffusive convection of micro polar fluid with hall cur-rent", Int. J. of Appl. Math. and Mech., 6(19)(2010), 67-85.
[10] N. Rani and S. K. Tomar: “Convection of micro polar heated fluid layer with rotation in hydromagnetics", Int. J. Fluid Mech., 32(6)(2005).
[11] A. Pellew and R. V. Southwell: “On the maintained convection motion in a fluid heated from below", Proc. Roy. Soc. of London Ser., A 176 (1940), 312-343.
[12] M. B. Banerjee, J. R. Gupta, R. G. Shandil and S. K. Sood: “On the Principle of exchange of stabilities in the magnetohydrodynamic Simple Bernard problem", J. Math Anal. App., 108 (1985), 216-222.
[13] J. R. Gupta and Sharda D. Rana: “A Modified Analysis of Magneto hydrodynamic Thermal/Thermohaline Convection", J. Math. Anal. and App.,159 (1991), 323-344.
[14] Lu, H., A. H. P. Swift, H. D. H. Jr. and J. C. Walton (2004). "Advancements in salinity gradient solar pond technologybased on sixteen years of operational experience." ASME Journal of Solar Energy Engineering 126(2): 759 - 767.
[15]Malik, N., A. Date, J. Leblanc, A. Akbarzadeh and B. Meehan (2011). "Monitoring and maintaining the water clarity of salinity gradient solar ponds." Solar Energy 85(11): 2987-2996.
[16] C. T. Duba, M. Shekar, M. Narayana& P. Sibanda (2016) Soret and Dufour effects on thermohaline convection in rotating fluids, Geophysical & Astrophysical Fluid Dynamics.
[17] Hull, John Ralph, “Physics of the solar pond” (1979). Retrospective Thesis and Dissertations, paper 6608.

Solar pond, Magnetic field, Rayleigh number, Lewis number, Bérnard convection.