Xanthan Yield and Conversion Efficiency of Pre-treated Rice Husk, Sweet Potato and Cassava Flours from Xanthomonas campestris Fermentation

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2017 by IJETT Journal
Volume-49 Number-8
Year of Publication : 2017
Authors : Obidah, J.S, Owuama, C.I
DOI :  10.14445/22315381/IJETT-V49P273

Citation 

Obidah, J.S, Owuama, C.I "Xanthan Yield and Conversion Efficiency of Pre-treated Rice Husk, Sweet Potato and Cassava Flours from Xanthomonas campestris Fermentation", International Journal of Engineering Trends and Technology (IJETT), V49(8),477-481 July 2017. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group

Abstract
Flours from cassava, sweet potato and rice husk were fermented in shake flask culture by Xanthomonas campestris and yielded various quantities of xanthan gum. Fermentation of 5 g/100 ml of each substrate showed that cassava flour yielded highest quantity of xanthan (2.3 g), followed by sweet potato flour (2.0 g), while the rice husk flour recorded the lowest yield (1.2 g). The conversion efficiency of cassava to xanthan decreased with increase in substrate concentration. At a concentration of 0.5 g/100 ml cassava flour, there was 80% conversion efficiency into xanthan as against 32 % conversion efficiency from 2.5 g/100 ml cassava flour. Nevertheless, xanthan gum yield increased with increase in substrate concentration. Acid hydrolysis of cassava, sweet potato and rice husk flours prior to fermentation increased xanthan yield. Xanthan gum from hydrolysed cassava flour was finer and whiter than that from non-hydrolysed flour. Generally, xanthan yield from rice husk flour increased with increase in the heating period during hydrochloric acid hydrolysis. Cell free extracts of X. campestris fermentation broth contained extracellular enzymes with amylolytic, cellulolytic and cyanidase activities.

Reference
1. F. GarcõÂa-Ochoaa, V.E. Santosa, J.A Casasb and E. GoÂmez, “Xanthan Gum: Production, Recovery, and Properties.” Biotechnol. Adv. vol.1, no.18, pp. 549-579 Nov. 2000.
2. L.V. Brandao, D.J. Assis, J.A. Lopez, M.C.A. Espiridiao, E.M. Echevarria and J.I. Druzian, “Bioconversion of crude glycerin by Xanthomonas campestris: xanthan production and characterization.” Brazilian J. Chem. Engineering vol.30, no. 4, pp. 737-746 Dec. 2013
3 P. Kerdsup, S. Tantratian, R. Sanguandeekul and C.Imjongjirak, “Xanthan Production by Mutant Strain of Xanthomonas campestris TISTR 840 in Raw Cassava Starch Medium.” Fd. Bioprocess Technol.vol. 4, pp. 1459-1463. Jun. 2011.
4 A.G. Murugesan, B. Dhevahi, D. Gowdhama, A.K. Bala and P.C. Sathesh, “Production of xanthan employing Xanthomonas campestris using sugar cane molasses.” Am. J. Environ, Engineering vol. 2, no. 2, pp. 31-34. Feb. 2012.
5. R.D. Cooke and E.N Maduagwu, “The effect of simple processing on the cyanide content of cassava chips.” J. Fd. Technol. vol.13, pp. 299-306. Mar. 1978.
6. A. Wesstby, A. Reiely and Z. Bainbrridge, “Review of the effects of fermentation on naturally occurring toxins. Fd Control vol. 8, pp. 329-339 Oct. 1997.
7. C.G. Cheong, S.H. Eom, C. Chang, D.H Shin, H.K. Song, K. Min, J.H. Moon, K.K. Kim, K.Y. Hwang and S.W. Suh, “Crystallization, molecular replacement solution, and refinement tetrameric beta amylase from sweet potato.” Protein vol. 21, no. 2, pp. 105-107 Feb. 1995
8. L. Ludueña, D. Fasce, V.A. Alvarez and P.M. Stefani, “Nanocellulose from rice husk following alkaline treatment to remove silica.” Bioresources vol. 6, no. 2, pp. 1440-1454 Mar. 2011
9. R.C. Kasana, R. Salwan, H. Dhar, S. Dutt and G. Arvind, “A rapid and easy method for detection of microbial cellulases on agar medium using Gram?s iodine.” Curr.Microbiol. vol. 57, no. 5, pp. 503-507 Nov. 2008.
10. R. Gonzalez, M.R. Johns, P.F. Greenfield and G.W. Pace, “Xanthan gum precipitation using ethanol. Process Biochem vol. 24 pp 200-203. Apr. 1989.
11. C. O?Reilly and P.D. Turner, “The nitrilase family of CN hydrolyzing enzymes – a comparative Study.” J Appl. Microbiol. vol 95, pp. 1161-1174 Feb. 2003
12. S.D. Ebbs, “Biological degradation of cyanide compounds” Curr.Opin Biottechnol. vol. 15, no. 3, pp. 231-236 Jun. 2004.
13. O.O. Tewe and E.A. Lyayi. “Cyanogenic glycocides” InToxicants of plants origin Cheeke Ed. vol. 2, pp 43 60 R. CRS Press. 1989.
14. S. Pentzold, M. Zagrobelny, N. Bjarnholt, J. Kroymann, H. Vogel, C.E. Olsen, B.L. Moller and S. Bak. “Metabolism, excretion and avoidance of cyanogenic glycosides in insects with different feeding specializations. Insect Biochem. Mol. Bio. vol. 66 pp 119-128 Nov. 2015
15. F. Nartey. Manihot esculenta in Africa: Utilization as man food and animals feed. Munksgaard, Copenhagen pp. 42-43. 1978.
16. A.O. Ketiku and V.A. Oyenuga. “Changes in carbohydrate constituents of cassava root tube (Manihotutilissimapohl) during growth.” J. Sci.Fd. Agric. vol. 23, no. 12, pp. 1451-1456 Dec. 1972.
17. G.E. Zaikov, V.M.N. Lobo, and N. Guerorotxena. International perspective on chemistry and biochemistry research. Nova Science publishers, pp.105 Oct. 2003 ISBN: 1-59033-688-7
18. A. Moosavi and A. Kabassi, “Bioconversion of Sugar-Beet Molasses into Xanthan Gum.” J.Fd. Process.Preservation. vol. 34 no 2 pp 316-322, Feb. 2010
19. M.H. Abd El-Salam, M.A Fadel and H.A.Murad, “Biconversion of sugarcane molasses into xanthan gum.” J. Biotechnol. vol. 33, no. 1, pp. 103-106. Sep. 1994.
20. L. Qunliang, Y. Wei, K. Yang, Y. Wen and J. Tang, “Xanthan gum production by Xanthomonas campestris pv. campestris 8004 using cassava starch as carbon source” Af. J. Biotechnol. vol 11, no. 73, pp. 13809 13813. Sep. 2012.
21. J. Binder and R.T. Raines, “Fermentable sugars by chemical hydrolysis of biomass.” Proc. Natl. Acad. Sci. vol. 107, no 10, pp. 4516–4521. Jan. 2010.
22. S. Desplanques, F. Renou, M. Grisel and C. Malhiac, “Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions.” Food hydrocolloids vol. 27, pp. 401- 410 Nov. 2012.
23 A. Singh, K. Das and D.K. Sharma, “Production of reducing sugars from bagasse and rice husk by acid hydrolysis.” Agric. Wastes vol. 9, no. 2, pp. 131-145. Sep. 1984.
24 A.L. Woiciechowski, S. Nitsche, A. Pandey and C. Ricardo, “Acid and enzyme hydrolysis to recover reducing sugars from cassava bagasse.”An economic study. Braz Arch. Biol. Technol vol. 45, pp 393-400. Mar. 2002.

Keywords
Cassava, potato, rice husk, xanthomonas, xanthan gum.