Application of Data Mining in Census Data Analysis using Weka

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2017 by IJETT Journal
Volume-52 Number-3
Year of Publication : 2017
Authors : Ms.Dhwani Sondhi
DOI :  10.14445/22315381/IJETT-V52P224

Citation 

Ms.Dhwani Sondhi "Application of Data Mining in Census Data Analysis using Weka", International Journal of Engineering Trends and Technology (IJETT), V52(3),157-161 October 2017. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group

Abstract
Data mining which is the automatic process of extraction of useful data by using statistical and visualization techniques has become the new preference for statisticians, scientists and researchers alike. It helps in looking out for the most important trends in data and taking business - oriented decisions. The paper here presents an application of data mining in the analysis of census and looksat the noticeable trends. The objective of the paper is to discover the relevant information of gender inequality in all spheres from the primary census of the Raigarh district in Maharashtra with the help of appropriate data mining methods like clustering, visualization using the Weka tool.

Reference
1. Agrawal, R., & Shim, K. (1996, August). Developing Tightly-Coupled Data Mining Applications on a Relational Database System. In KDD (pp. 287-290).
2. Baker, R. S. J. D. (2010). Data mining for education. International encyclopedia of education, 7(3), 112-118.
3. Berkhin, P. (2006). A survey of clustering data mining techniques. Grouping multidimensional data, 25, 71.
4. Diz, J., Marreiros, G., & Freitas, A. (2016). Applying Data Mining Techniques to Improve Breast Cancer Diagnosis. Journal of medical systems, 40(9), 203.
5. Elder, J. (2009). Handbook of statistical analysis and data mining applications. Academic Press.
6. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.
7. Frank, E., Hall, M., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I. H., & Trigg, L. (2009). Weka-a machine learning workbench for data mining. In Data mining and knowledge discovery handbook(pp. 1269-1277). Springer US.
8. Frank, E., Hall, M., Trigg, L., Holmes, G., & Witten, I. H. (2004). Data mining in bioinformatics using Weka. Bioinformatics, 20(15), 2479-2481.
9. Han, J., Pei, J., &Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
10. Koh, H. C., & Tan, G. (2011). Data mining applications in healthcare. Journal of healthcare information management, 19(2), 65.
11. Markov, Z., & Russell, I. (2006). An introduction to the WEKA data mining system. ACM SIGCSE Bulletin, 38(3), 367-368.
12. Mining, W. I. D. (2006). Data Mining: Concepts and Techniques. Morgan Kaufinann.
13. Romero, C., Ventura, S., & García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384.
14. Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27.
15. Shmueli, G., Bruce, P. C., Yahav, I., Patel, N. R., & Lichtendahl Jr, K. C. (2017). Data Mining for Business Analytics: Concepts, Techniques, and Applications in R. John Wiley & Sons.
16. Tan, P. N. (2006). Introduction to data mining. Pearson Education India.
17. Varlamis, I., Apostolakis, I., Sifaki-Pistolla, D., Dey, N., Georgoulias, V., & Lionis, C. (2017). Application of data mining techniques and data analysis methods to measure cancer morbidity and mortality data in a regional cancer registry: The case of the island of Crete, Greece. Computer Methods and Programs in Biomedicine, 145, 73-83.
18. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.

Keywords
WEKA, Census, Gender inequality, data mining.