A Survey of Machine Learning Algorithms
Citation
MLA Style: Jayakumar Sadhasivam, Arpit Rathore,Indrajit Bose, Soumya Bhattacharjee, Senthil Jayavel "A Survey of Machine Learning Algorithms" International Journal of Engineering Trends and Technology 68.4(2020):64-71.
APA Style:Jayakumar Sadhasivam, Arpit Rathore,Indrajit Bose, Soumya Bhattacharjee, Senthil Jayavel. A Survey of Machine Learning Algorithms International Journal of Engineering Trends and Technology, 68(4),64-71.
Abstract
Today machine-learning algorithms provide an evident way to predict the assertive outcomes of different fields of datasets like healthcare, stock exchange, population statistics etc. In this research paper, we are reviewing these three supervised type machine-learning algorithms like Support Vector Machine (SVM), Random Forest and Naïve Bayes algorithms. Give our illustrative outlook on these algorithms.
Reference
[1] Boser, B., Guyon, I., &Vapnik, V. (1992). “A training algorithm for optimal margin classifiers. Proceedings Of The Fifth Annual Workshop On Computational Learning Theory - COLT `92”. doi: 10.1145/130385.130401
[2] Han, J., &Kamber, M. (2012). “Data mining (3rd ed.)”. Haryana, India: Elsevier.
[3] Zhang, W., Zhang, H., Liu, J., Li, K., Yang, D., & Tian, H. (2017). “Weather prediction with multiclass support vector machines in the fault detection of photovoltaic system”. IEEE/CAA Journal Of AutomaticaSinica, 4(3), 520-525. doi: 10.1109/jas.2017.7510562
[4] Wu, W., & Zhou, H. (2017). “Data-Driven Diagnosis of Cervical Cancer With Support Vector Machine-Based Approaches”. IEEE Access, 5, 25189-25195. doi: 10.1109/access.2017.2763984
[5] Halde, R., Deshpande, A., & Mahajan, A. (2016). “Psychology assisted prediction of academic performance using machine learning”. 2016 IEEE International Conference On Recent Trends In Electronics, Information & Communication Technology (RTEICT). doi: 10.1109/rteict.2016.7807857
[6] S. Saini and S. Kohli, "Machine learning techniques for effective text analysis of social network E-health data," 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, 2016, pp. 3783-3788.
[7] Deepak, E., Pooja, G., Jyothi, R., Kumar, S., & Kishore, K. (2016). “SVM kernel based predictive analytics on faculty performance evaluation”. 2016 International Conference On Inventive Computation Technologies (ICICT). doi: 10.1109/inventive.2016.7830062
[8] Dsouza, K., & Ansari, Z. (2017). “Experimental Exploration of Support Vector Machine for Cancer Cell Classification”. 2017 IEEE International Conference On Cloud Computing In Emerging Markets (CCEM). doi: 10.1109/ccem.2017.15
[9] Ren, R., Wu, D., & Liu, T. (2018). “Forecasting Stock Market Movement Direction Using Sentiment Analysis and Support Vector Machine”. IEEE Systems Journal, 1-11. doi: 10.1109/jsyst.2018.2794462
[10] Negri, R., da Silva, E., &Casaca, W. (2018). “Inducing Contextual Classifications With Kernel Functions Into Support Vector Machines”. IEEE Geoscience And Remote Sensing Letters, 1-5. doi: 10.1109/lgrs.2018.2816460
[11] Nirob, S., Nayeem, M., & Islam, M. (2017). “Question classification using support vector machine with hybrid feature extraction method”. 2017 20Th International Conference Of Computer And Information Technology (ICCIT). doi: 10.1109/iccitechn.2017.8281790
[12] Ma, X., & Zhou, Z. (2018). “Student pass rates prediction using optimized support vector machine and decision tree”. 2018 IEEE 8Th Annual Computing And Communication Workshop And Conference (CCWC). doi: 10.1109/ccwc.2018.8301756
[13] Mahajan, R., Kamaleswaran, R., Howe, J., &Akbilgic, O. (2017). “Cardiac Rhythm Classification from a Short Single Lead ECG Recording via Random Forest”. 2017 Computing In Cardiology Conference (Cinc). doi: 10.22489/cinc.2017.179-403
[14] Nabi, M., Altaf, M.T., Ismail, S., Hasan, A.S., Islam, M.S., Mashrur-E-Elahi, G.M., Izhar, M.N., Al-Mahmud, Mondal, A., Saha, A., Islam, M.A., Hasan, K.M., Rahman, M.M., Fukuhara, T., Nakagawa, H., Hatzivassiloglou, V., & Pang, B. (2016). “Detecting Sentiment from Bangla Text using Machine Learning Technique and Feature Analysis”.
[15] Yao, D., Yang, J., & Zhan, X. (2011). “Predicting breast cancer survivability using random forest and multivariate adaptive regression splines.” Proceedings Of 2011 International Conference On Electronic & Mechanical Engineering And Information Technology. doi: 10.1109/emeit.2011.6023012
[16] Lameski, P., Zdravevski, E., Koceski, S., Kulakov, A., &Trajkovik, V. (2017). “Suppression of Intensive Care Unit False Alarms based on the Arterial Blood Pressure Signal”. IEEE Access, 1-1. doi: 10.1109/access.2017.2690380
[17] Halde, R. (2016). “Application of Machine Learning algorithms for betterment in education system”. 2016 International Conference On Automatic Control And Dynamic Optimization Techniques (ICACDOT). doi: 10.1109/icacdot.2016.7877759
[18] Ghatasheh, N. (2014). “Business analytics using random forest trees for credit risk prediction: A comparison study”. International Journal of Advanced Science and Technology, 72(2014), 19-30.
[19] Soliman, G., El-Nabawy, A., Misbah, A., &Eldawlatly, S. (2017). “Predicting all star player in the national basketball association using random forest”. 2017 Intelligent Systems Conference (Intellisys). doi: 10.1109/intellisys.2017.8324371
[20] Wang, C., Dong, X., Yu, L., Ye, L., Zhuang, W., & Ma, F. (2017). “Prediction of days in hospital for children using random forest”. 2017 10Th International Congress On Image And Signal Processing, Biomedical Engineering And Informatics (CISP-BMEI). doi: 10.1109/cispbmei. 2017.8302287
[21] Hou, Y., Edara, P., & Chang, Y. (2017). “Road network state estimation using random forest ensemble learning”. 2017 IEEE 20Th International Conference On Intelligent Transportation Systems (ITSC). doi: 10.1109/itsc.2017.8317743
[22] Manzoor, M., & Morgan, Y. (2018). “Vehicle make and model recognition using random forest classification for intelligent transportation systems”. 2018 IEEE 8Th Annual Computing And Communication Workshop And Conference (CCWC). doi: 10.1109/ccwc.2018.8301714
[23] Ng, S. S., Xing, Y., &Tsui, K. L. (2014). “A naive Bayes model for robust remaining useful life prediction of lithiumion battery”. Applied Energy, 118, 114-123.
[24] Narayanan, V., Arora, I., & Bhatia, A. (2013, October). “Fast and accurate sentiment classification using an enhanced Naive Bayes model”. In International Conference on Intelligent Data Engineering and Automated Learning (pp. 194-201). Springer, Berlin, Heidelberg.
[25] Jun Zhang, Chao Chen, Yang Xiang, Wanlei Zhou, & Yong Xiang. (2013). “Internet Traffic Classification by Aggregating Correlated Naive Bayes Predictions”. IEEE Transactions On Information Forensics And Security, 8(1), 5-15. doi: 10.1109/tifs.2012.2223675
[26] Singh, G., Bagwe, K., Shanbhag, S., Singh, S., & Devi, S. (2017). “Heart disease prediction using Naïve Bayes”. International research Journal of Engineering and Technology, 4(03).
[27] Gallagher, C., Madden, M., & D`Arcy, B. (2015). “A Bayesian Classification Approach to Improving Performance for a Real-World Sales Forecasting Application”. 2015 IEEE 14Th International Conference On Machine Learning And Applications (ICMLA). doi: 10.1109/icmla.2015.150.
[28] Liu, P., Yu, H., Xu, T., & Lan, C. (2017). “ on archives text classification based on Naive bayes”. 2017 IEEE 2Nd Information Technology, Networking, Electronic And Automation Control Conference (ITNEC). doi: 10.1109/itnec.2017.8284934
[29] Granik, M., &Mesyura, V. (2017). “Fake news detection using naive Bayes classifier”. 2017 IEEE First Ukraine Conference On Electrical And Computer Engineering (UKRCON). doi: 10.1109/ukrcon.2017.8100379
Keywords
Dataset, SVM, Random Forest, Naïve Bayes, Decision Tree, Training Dataset, Testing Dataset