Multimodal Anesthesia Using Xenon and Transcutaneous Electrical Nerve Stimulation During Dental Implantation

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2020 by IJETT Journal
Volume-68 Issue-8
Year of Publication : 2020
Authors : Igor Alexandrovich Shugaylov, Oleg Nikolaevich Moskovets, Dmitry Konstantinovich Yudin, Igor Anatolyevich Zinovjev
DOI :  10.14445/22315381/IJETT-V68I8P216S

Citation 

MLA Style: Igor Alexandrovich Shugaylov, Oleg Nikolaevich Moskovets, Dmitry Konstantinovich Yudin, Igor Anatolyevich Zinovjev  "Multimodal Anesthesia Using Xenon and Transcutaneous Electrical Nerve Stimulation During Dental Implantation" International Journal of Engineering Trends and Technology 68.8(2020):85-96. 

APA Style:Igor Alexandrovich Shugaylov, Oleg Nikolaevich Moskovets, Dmitry Konstantinovich Yudin, Igor Anatolyevich Zinovjev. Multimodal Anesthesia Using Xenon and Transcutaneous Electrical Nerve Stimulation During Dental Implantation  International Journal of Engineering Trends and Technology, 68(8), 85-96.

Abstract
The use of xenon in medicine has great potential for increasing the efficiency and safety of general medicine and surgical service. Over the past decades, the development of methods for the use of xenon has significantly intensified, however, work in this direction is mainly limited to experimental studies on animals. In this research, the authors studied the effect of conscious sedation by preliminary inhalation using 30/70 xenon-oxygen mix during dental implantation on the amount of pain, indicators of the psychoemotional state, central hemodynamics, the amount of pain and tissue swelling in the postoperative period, the ratio of the sympathetic tonus and parasympathetic tonus, and saturation of peripheral blood with oxygen at the stages of operation. Additionally, transcutaneous electrical nerve stimulation and local anesthesia, which use mechanisms of an antinociceptive effect that differ from that of xenon, were used to increase the pain-alleviating effect. A group of patients that received only local anesthesia was used for comparison. The use of multimodal anesthesia significantly reduced the anxiety and depression, stabilized the arterial pressure and reduced the cardiac rate, increased the parasympathetic tonus and oxygen saturation, reduced the amount of pain at the stages of operation and in the postoperative period, and reduced edema on the third day after the operation. Reduced soreness at all stages of the operation allowed significantly reducing the consumption of local anesthetic and using a less traumatic technique for local anesthesia. Patients showed no negative psychoemotional reactions and somatic complications during surgery; there were no complications during the period of adaptation and integration of implants. It was shown that pronounced parasympathicotonia developed after inhalation of xenon-oxygen mix, which can cause the development of a side effect of xenon – postoperative nausea and vomiting. The additional use of transcutaneous electrical nerve stimulation reduced the parasympathetic tonus, potentiated the painalleviating effect and did not have a significant effect on the psychotropic effect of xenon. The proposed method of short-period preliminary inhalation of xenon-oxygen mix provides proper anesthesia, increases the safety of the intervention and allows obtaining high clinical results for the treatment of patients with various forms of edentia.

Reference

[1] A.A. Kulakov, T.G. Robustova, A.I. Nerobeev. Zubnaya i chelyustno-litsevaya implantatsiya [Dental and maxillofacial implantation]. Khirurgicheskaya stomatologiya i chelyustno-litsevaya khirurgiya. Natsionalnoe rukovodstvo [Surgical dentistry and maxillofacial surgery. National manual.]. GEOTAR-media publishing group, pp. 865-889, 2010.
[2] L.S.C. Law, E.A.G. Lo, T.J. Gan. Xenon anesthesia: a systematic review and meta-analysis of randomized controlled trials. Anesthesia & Analgesia, vol. 122, pp. 78- 97, 2016.
[3] N.E. Burov, V.N. Potapov, G.N. Makeev. Ksenon v anesteziologii. Kliniko-eksperimentalnye issledovaniya [Xenon in anesthesiology. Clinical and experimental studies]. Moscow: Pulse, 2000.
[4] E.G. Meloni, T.E. Gillis, J. Manoukian, M.J. Kaufman. Xenon impairs reconsolidation of fear memories in a rat model of post-traumatic stress disorder (PTSD). PLoS ONE., vol. 9, no. 8, 2014.
[5] J. D. Deken, S. Rex, D. Monbaliu, J. Pirenne, I. Jochmans. The efficacy of noble gases in the attenuation of ischemia reperfusion injury: a systematic review and meta-analyses. Critical Care Medicine, vol. 44, no. 9, pp. 886-896, 2016.
[6] M. Maze. Preclinical neuroprotective actions of xenon and possible implications for human therapeutics: a narrative review. Canadian journal of anesthesia – Journal canadien d`anesthésie, vol. 63, pp. 212-226, 2016.
[7] E. Esencan, S. Yuksel, Y.B. Tosun, A. Robinot, I. Solaroglu, J.H. Zhang. Xenon in medical area: emphasis on neuroprotection in hypoxia and anesthesia. Medical Gas Research, vol. 3, no. 4, 2013.
[8] W. Liu, Y. Liu, H. Chen, K. Liu, H. Tao, X. Sun. Xenon preconditioning: molecular mechanisms and biological effects. Medical Gas Research, vol. 3, no. 3, 2013.
[9] O.N. Moskovets. Elektrofiziologicheskii analiz antinotsitseptivnykh effektov elektrostimulyatsii ushnoi rakoviny u koshek. [Electrophysiological analysis of the antinociceptive effects of electrostimulation of the auricle in cats]. PhD Thesis in Biology sciences. Moscow, 1980.
[10] I.A. Shugailov. Povyshenie effektivnosti obezbolivaniya pri khirurgicheskom lechenii stomatologicheskikh zabolevnii [Improving the effectiveness of analgesia in the surgical treatment of dental diseases]. PhD Thesis in Medicine sciences. Moscow, 1984.
[11] Medical technology: “The use of oxygen-xenon mix for pain and pain syndromes.” Permit for use MT FS ? 2010/123, April 2, 2010.
[12] Medical technology: “A method for the correction of acute and chronic stress disorders based on the inhalation of therapeutic doses of medical xenon.” Permit for use MT FS ? 2010/227, June 17, 2010.
[13] I.A. Shugailov, A.S. Babikov, N.E. Burov, M.V. Kolesnichenko, O.N. Moskovets, I.V. Molchanov, A.A. Nikitin, A.E. Olesov, D.N. Rodionov, A.V. Potapov, V.N. Potapov, S.V. Potapov, D.K. Yudin. Primenenie meditsinskogo ksenona pri kombinirovannom obezbolivanii i sedatsii v ambulatornoi stomatologicheskoi praktike [The use of medical xenon in combined anesthesia and sedation in outpatient dental practice]. Metodicheskie rekomendatsii, 2015.
[14] A.S. Zigmond, R.P. Snaith. The Hospital Anxiety and Depression scale. Acta Psychiatrica Scandinavica, vol. 67, pp. 361-370, 1983.
[15] A. Dobrovolsky, T.E. Ichim, D.Ma, S. Kesari, V. Bogin. Xenon in the treatment of panic disorder: an open label study. Journal of Translational Medicine, vol. 15, no. 137, 2017.
[16] A.S. Kalmanov, Yu.A. Bubeev, T.I. Kotrovskaya. Vliyanie kursovogo primeneniya ingalyatsii ksenono-kislorodnoi gazovoi smesi na pokazateli funktsionalnogo sostoyaniya alpinistov. [Course application effect of oxygen-xenon gas mix inhalation on functional status of mountaineers]. Lechebnaya fizkultura i sportivnaya meditsina, vol. 3, no. 87, pp. 27-34, 2011.
[17] T.V. Igoshina. Psikhofiziologicheskoe obosnovanie primeneniya metoda ingalyatsii ksenona pri korrektsii nevroticheskikh, svyazannykh so stressom rasstroistv u lits opasnykh professii [Psychophysiological substantiation for the use of the xenon inhalation method in the correction of neurotic stress-related disorders in persons of dangerous professions]. PhD Thesis in Medicine sciences. Moscow, 2017.
[18] V.I. Sovetov, O.P. Mikheev, E.S. Andreeva, N.E. Ivanova, A.G. Vinokurov, N.A. Kurkin. Sposob povysheniya fizicheskoi rabotosposobnosti cheloveka [A way to increase the physical performance of a person]. Russian patent No. 2466750. 20.11.2012.
[19] S.F. Malamed. Sedation: a guide to patient management. Elsevier, 2018.
[20] N.E. Burov, V.N. Potapov. Ksenon v meditsine: ocherki po istorii i primeneniyu meditsinskogo ksenona. [Xenon in medicine: essays on the history and application of medical xenon]. Moscow: Pulse, 2012.
[21] R. Hanss, B. Bein, P. Turowski, E. Cavus, M. Bauer, M. Andretzke, M. Steinfath, J. Scholz, P. H. Tonner. The influence of xenon on regulation of the autonomic nervous system in patients at high risk of perioperative cardiac complications. British Journal of Anaesthesia, vol. 96, no. 4, pp. 427-436, 2006.
[22] R. Dampney. Emotion and the Cardiovascular System: Postulated Role of Inputs from the Medial Prefrontal Cortex to the Dorsolateral Periaqueductal Gray. Frontiers in Neuroscience, vol. 12, p. 343, 2018.
[23] R. Dampney. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol. 309, pp. 429-443, 2015.
[24] H. Yoshida, T. Kushikata, T. Kubota, K. Hirota, H. Ishihara, A. Matsuki. Xenon inhalation increases norepinephrine release from the anterior and posterior hypothalamus in rats. Canadian Journal of Anesthesia, vol. 48, pp. 651-655, 2001.
[25] W.F. Maragos, J.B. Penney, A.B. Young. Anatomic correlation of NMDA [3H]-TCP-labelled receptors in rat brain. Journal of Neuroscience, vol. 8, no. 2, pp. 493-501, 1988.
[26] H.M. Homi, N. Yokoo, D.Ma, D.S. Warner, N.P. Franks, M. Maze, H.P. Grocott. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology, vol. 99, pp. 876-881, 2003.
[27] D. Ma, M. Hossain, G.K. Pettet, Y. Luo, T. Lim, S. Akimov, R.D. Sanders, N.P. Franks, M. Maze. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. Journal of Cerebral Blood Flow & Metabolism, vol. 2, no. 26, pp. 199-208, 2006.
[28] R. Haseneder, S. Kratzer, E. Kochs, V.-S. Eckle, W. Zieglga, G. Rammes. Xenon reduces N-methyl-D-aspartate and ?- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor–mediated synaptic transmission in the amygdala. Anesthesiology, vol. 109, pp. 998-1006, 2008.
[29] A. Alam, K. C. Suen, Z. Hana, D. Robert, R. D. Sanders, M. Maze, D. Ma. Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon. Neurotoxicology and Teratology, vol. 60, pp. 102-116, 2017.
[30] C. Stoppe, J. Ney, M. Brenke, A. Goetzenich, C. Emontzpohl, G. Schälte, O. Grottke, M. Moeller, R. Rossaint, M. Coburn. Sub-anesthetic xenon increases erythropoietin levels in humans: a randomized controlled trial. Sports Medicine, vol. 46, pp. 1753-1766, 2016.
[31] C. Frampas, M. Augsburger, V. Varlet. Xenon: from medical applications to doping uses. Toxicologie Analytique & Clinique, vol. 29, no. 3, pp. 309-319, 2017.
[32] D.A. Winkler, A. Thornton, G. Farjot, I. Katz. The diverse biological properties of the chemically inert noble gases. Pharmacology & Therapeutics, vol. 160, pp. 44-64, 2016.
[33] H.J. Gerbershagen, S. Aduckathil, A.J. van Wijck, L.M. Peelen, C.J. Kalkman, W. Meissner. Pain intensity on the first day after surgery: a prospective cohort study comparing 179 surgical procedures. Anesthesiology, vol. 118, no. 4, pp. 934-944, 2013.
[34] A.M. Ovechkin. Posleoperatsionnaya bol: sostoyanie problemy i sovremennye tendentsii posleoperatsionnogo obezbolivaniya. [Postoperative pain: the status of the problem and current trends in postoperative pain management]. Regionarnaya anesteziya i lechenie ostroy boli, vol. 9, no. 2, pp. 29-39, 2015.
[35] N.M. Girdler, C.M. Hill, K.E. Wilson. Conscious Sedation for Dentistry. Second Edition John Wiley & Sons, 2018.

Keywords
xenon, dental implantation, transcutaneous electrical nerve stimulation, adentia, psychotropic effect, antinociceptive effect, Multimodal anesthesia.