The Influence of Wetting of Flow Passage Surfaces in Pumps-as-Turbines on Their Energetic Characteristics

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2020 by IJETT Journal
Volume-68 Issue-11
Year of Publication : 2020
Authors : A.V. Volkov, A.V. Ryzhenkov, A.A. Vikhlyantsev, A.A. Druzhinin, S.P. Cherepanov, Ji?í Šoukal, Milan Sedla?, Martin Komárek, František Pochylý, Pavel Rudolf, Simona Fialová
DOI :  10.14445/22315381/IJETT-V68I11P203

Citation 

MLA Style: A.V. Volkov, A.V. Ryzhenkov, A.A. Vikhlyantsev, A.A. Druzhinin, S.P. Cherepanov, Ji?í Šoukal, Milan Sedla?, Martin Komárek, František Pochylý, Pavel Rudolf, Simona Fialová  "The Influence of Wetting of Flow Passage Surfaces in Pumps-as-Turbines on Their Energetic Characteristics" International Journal of Engineering Trends and Technology 68.11(2020):16-24. 

APA Style:A.V. Volkov, A.V. Ryzhenkov, A.A. Vikhlyantsev, A.A. Druzhinin, S.P. Cherepanov, Ji?í Šoukal, Milan Sedla?, Martin Komárek, František Pochylý, Pavel Rudolf, Simona Fialová. The Influence of Wetting of Flow Passage Surfaces in Pumps-as-Turbines on Their Energetic Characteristics  International Journal of Engineering Trends and Technology, 68(11),16-24.

Abstract
This article describes the procedure of consideration for wettability of flow passage surfaces of hydropower equipment upon numerical solution of 3D problems of hydrodynamic analysis using commercial software. The experimental studies performed in Moscow Power Engineering Institute (MPEI) and devoted to the influence of wettability of internal surfaces of Du25, Du50, Du65 and Du80 pipes on hydraulic loss are systemized. The interrelation between wetting angle, equivalent sand roughness, and generalized indicator, roughness coefficient, has been determined. FlowVision software was used for verification of the proposed procedure and the influence of wettability of single elements of flow passage in M29 pump-as-turbine in pump and turbine modes on its energetic characteristics was predicted.

Reference

[1] IHA. (2020) Hydropower status report. Sector trends and insights, 46 p. Available: https://hydropower.ru/news/otraslevye-novosti/2020_hydropower_status_report_-_28_may_2020.pdf
[2] A.V. Volkov, A.A. Vikhlyantsev, A.A. Druzhinin, A.V. Ryzhenkov, S.N. Pankratov, B.M. Orahelashvily, and A.K. Lyamasov, Optimization of Microturbines for Combined Energy Sources Based on Microhydropower Plants, International Journal of Innovative Technology and Exploring Engineering. 9(1) (2019) 3981-3987.
[3] A.G. Parygin, M.Yu. Pomortsev, and G.P. Khovanov, O primenenii biomimetiki v proizvodstve tsentrobezhnykh nasosov [On application of biomimetics in production of centrifugal pumps], Estestvennye i tekhnicheskie nauki, 5 (2013) 241-248.
[4] A.A. Vikhlyantsev, A.V. Volkov, A.G. Parygin, A.V. Naumov, J. Šoukal, M. Sedlá?, and M. Komárek, Vliyanie gidrofobizatsii rabochikh koles tsentrobezhnykh nasosov na ikh ekspluatatsionnye kharakteristiki [Influence of Hydrophobization of Impellers of Centrifugal Pumps on their Operating Characteristics], Thermal Engineering. No. 12, pp. 11-17, 2016.
[5] M.A. Morozov, A.V. Volkov, A.V. Ryzhenkov, A.G. Parygin, M.V. Lukin, and A.V. Naumov, Raschet truboprovodnykh sistem s uchetom stepeni gidrofobnosti vnutrennikh poverkhnostei [Prediction of pipeline systems with consideration for hydrophobicity degree of internal surfaces], Neftyanoe khozyaistvo. 4 (2016) 130-133.
[6] P.V. Pugachyov, D.G. Svoboda, and A.A. Zharkovskii, Raschyot i proektirovanie lopastnykh gidromashin. Raschyot vyazkogo techeniya v lopastnykh gidromashinakh s ispol`zovaniem paketa Ansys CFX [Prediction and design of blade hydraulic machines. Prediction of viscous flow in blade hydraulic machines using Ansys CFX pack]: Guidebook. St Petersburg, Russia: Publishing house of the Polytechnic University, 2016.
[7] A.A. Zharkovskij, V.L. Pleshanov, and N.P. Morozov, Closer definition of calculation of losses and theoretical head in pumps of low and middle specific speed (SS), Gidrotekhnicheskoe Stroitel`stvo, 1 (2013) 135-39.
[8] A.A. Zharkovskii, and A.Y. Pospelov, Use of 3D Methods for Flow Analysis, Prediction of Characteristics, and Optimization of the Shape of Settings of Hydraulic Turbines, Power Technology and Engineering, 49(1) (2015) 27-32.
[9] D.A. Gorbatov, A.A. Zharkovskii, and E.A. Ivanov, Uchet vliyaniya chistoty poverkhnostei na gidravlicheskie poteri v elementakh protochnoi chasti tsentrobezhnogo nasosa [Consideration for the influence of surface cleanness on hydraulic loss in flow passage of centrifugal pump], in Nedelya nauki SPbPU, St. Petersburg, November 19-24, 2018. St. Petersburg, Russia: Federal State Autonomous Educational Institution of Higher Education. Peter the Great St. Petersburg Polytechnic University. (2018) 162-164.
[10] D. Štefan, P. Moravec, P. Rudolf, F. Pochylý, and J. Stejskal, Design and shape optimization of Pump-turbine runner and CFD simulation of 4-quadrant characteristic, in Proceedings, XXI Conference of students and post-graduates. MEI University, December 6, 2017. Moscow, Russia: MEI, 2017.
[11] P.N. Subbotina, and A.S. Shishaeva. (n.d). Primenenie razlichnykh modelei turbulentnosti dlya zadach vneshnego obtekaniya v programmnom komplekse FlowVision [Various models for problems of external flow using FlowVision software]. Available: https://flowvision.ru/images/2015/fv_es08_turbul.pdf
[12] A.Yu. Snegirev, Vysokoproizvoditel`nye vychisleniya v tekhnicheskoi fizike. Chislennoe modelirovanie turbulentnykh techenii [High performance computations in applied physics. Numerical simulation of turbulent flows]: Guidebook. St Petersburg, Russia: Publishing house of the Polytechnic University, 2009.

Keywords
pumped hydroelectric energy storage (PHES), pump-as-turbine, hydraulic loss, hydrophobic coating, flow passage, wetting angle, numerical simulation.