Evaluation of Rubber Seed Oil as Cutting Fluid using Minimum Quantity Lubrication in the Turning Process of AA6061

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
© 2021 by IJETT Journal
Volume-69 Issue-1
Year of Publication : 2021
Authors : Putu Hadi Setyarini, Khairul Anam, Purnomo, Faizal Hadi Prabowo
DOI :  10.14445/22315381/IJETT-V69I1P230


MLA Style: Putu Hadi Setyarini, Khairul Anam, Purnomo, Faizal Hadi Prabowo. "Evaluation of Rubber Seed Oil as Cutting Fluid using Minimum Quantity Lubrication in the Turning Process of AA6061" International Journal of Engineering Trends and Technology 69.1(2021):198-204.

APA Style:Putu Hadi Setyarini, Khairul Anam, Purnomo, Faizal Hadi Prabowo. Evaluation of Rubber Seed Oil as Cutting Fluid using Minimum Quantity Lubrication in the Turning Process of AA6061  International Journal of Engineering Trends and Technology, 69(1), 198-204.

At this time, a cooling technique has been developed in the machining process, namely the minimum of drop lubrication, to save the use of cutting fluid. The existence of cutting fluid as a lubrication medium can reduce the friction force between the tool and the workpiece so that the tool life can be extended and decrease the surface roughness value. This study uses the minimum drop lubrication technique and rubber seed oil as a cutting fluid. The turning process is done with carbide inserts and varying flow rates. The results showed that the greater the flow rate of cutting fluid (rubber seed oil), the lower the surface roughness value and the continuous and thinner chip shape. This is in accordance with the flow rate of 0 ml / s cutting fluid has an average roughness value of 2 ?m with a continuous chip shape and tends to be thick, the tool experiences cracks and wear. At the cutting fluid flow rate of 192 ml / s, it has an average surface roughness value of 1.729 ?m with a continuous and thin chip shape, the tool wears out but does not experience cracks.

[1] S. Barba, M. Barbarella, A. Di Benedetto, M. Fiani, L. Gujski, M. Limongiello, Accuracy Assessment of 3D Photogrammetric Models from an Unmanned Aerial Vehicle, Drones, 3(2019) 79.
[2] V. Vidyashree Nandini, K. Vijay Venkatesh, K. Chandrasekharan Nair, Alginate impressions: A practical perspective, J Conserv Dent. 11(2008) 37–41
[3] F. Fang, Atomic, and close-to-atomic scale manufacturing: perspectives and measures, Int. J. Extreme Manuf, 3(2020) 030201
[4] Z. Liu, B. Bhandari, Y. Wang, 3D printing: Printing precision and application in the food sector, Trends in Food Science & Technology Part A, 69(2017) 83-94
[5] F. Borchers, B. Clausen, S. Eckert, L. Ehle, J. Epp, S. Harst, M. Hettig, A. Klink, E. Kohls, H. Meyer, M. Meurer, B. Rommes, S. Schneider, R.Strunk, Comparison of Different Manufacturing Processes of AISI 4140 Steel with Regard to Surface Modification and Its Influencing Depth, Metals 10(2020) 895
[6] H.-.Möhring, P.Wiederkehr, K.Erkorkmaz, Y.Kakinuma, Self-optimizing machining systems, CIRP Annals, 69(2020) 740-763
[7] M. Papananias, T. E. McLeay, O. Obajemu, M. Mahfouf, V. Kadirkamanathan, Inspection by exception: A new machine learning-based approach for multistage manufacturing, Applied Soft Computing Part A, 97(2020) 106787
[8] H. Talebi-Ghadikolaee, H. Moslemi Naeini, M. Javad Mirnia, M. Ali Mirzai, H. Gorji, S. Alexandrov, Ductile fracture prediction of AA6061-T6 in the roll forming process,
[9] J. Yang, H. Li, D. Huang, G. Li, S. Yuan, Forming of thin-walled AA6061-T4 tubular joint by elastomeric bulging: experiment and computation, Int. J. Adv.Manu. Tech., 107(2020) 25–38
[10] K.Amini, W.Altenhof, S. Chung KimYuen, C.J.Opperman, G.N. Nurick, 10Experimental and numerical investigation on the deformation and energy dissipation of AA6061-T6 circular extrusion subjected to blast loading, Int. J. Impact Eng., 110(2017) 228-241
[11] Q. Zeng, Y. Qin, W. Chang, X. Luo, Correlating and evaluating the functionality-related properties with surface texture parameters and specific characteristics of machined components, Int. J. Mech. Sciences, 149(2018) 62-72
[12] K. Klauer, M. Eifler, B. Kirsch, J. Seewig &J. C. Aurich, Correlation between different cutting conditions, surface roughness and dimensional accuracy when ball end micro-milling material measures with freeform surfaces J. Machining Sci. Tech. 24(2020) 446-464
[13] M. Alajmi, K.R. Alrashdan, T. Alsaeed, A.Shalwan, Tribological characteristics of graphite-epoxy composites using adhesive wear experiments, J. Mat. Research Tech, 9(2020) 13671-13681
[14] W. Grzesik, Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art. J. Mat. Eng. Performance, 25(2016) 4460–4468
[15] G. Zheng, R. Xu, X. Cheng, G. Zhao, L. Li, J. Zhao, Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M, Measurement, 125(2018) 99-108
[16] C. Agrawal, J. Wadhwa, A. Pitroda, C. Iulian Pruncu, MuratSarikayaeNavneetKhannaab, Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti–6Al–4V titanium alloy: Cryogenic versus wet machining, Tribology Int., 153(2021), 106597
[17] B. Xue, Y. Geng, Y. Yan, J. Wang, Y. Sun, Finite element analysis of revolving tip-based cutting process, J. Manu. Proc., 47(2019) 141-156.
[18] P.-J. Yang, Q.-J. Li, W.-Z. Han, J. Li, E. Ma, Designing solid solution hardening to retain uniform ductility while quadrupling yield strength Acta Materialia, 179(2019) 107-118
[19] M.D.Hayat, H. Singh, Z. He, P. Cao, Titanium metal matrix composites: An overview, Composites Part A: App. Sci.Manu., 121(2019) 418-438
[20] F. Fang, F. Xu, Recent Advances in Micro/Nano-cuttig: Effect of Tool Edge and Material Properties, Nanomanufacturing and Metrology, https://doi.org/10.1007/s41871-018-0005-z
[21] Y. Bai, C. Zhao, J. Yang, R. Hong, C. Weng, H. Wang, Microstructure and machinability of selective laser melted high-strength maraging steel with heat treatment, J. Mat. Proc. Tech., 288(2021) 116906
[22] B. Haddag, S. Atlati, M. Nouari, A. Moufki, Dry Machining Aeronautical Aluminum Alloy AA2024-T351: Analysis of Cutting Forces, Chip Segmentation and Built-Up Edge Formation Metals; Basel 6(2016) 197
[23] K. K. Gajrani, P. S. Suvin, S. V. Kailas, M. R. Sanka, Hard machining performance of indigenously developed green cutting fluid using flood cooling and minimum quantity cutting fluid, J. Cleaner Prod., 206(2019) 108-123
[24] E. Laurila, J.Roenby, V.Maakala, P.Peltonen, H.Kahila, V.Vuorinen, Analysis of viscous fluid flow in a pressure-swirl atomizer using large-eddy simulation, Int. J.Multiphase Flow, 113(2019) 371-388
[25] O. Pereira, A. Rodríguez, A. I. Fernández-Abia, J. Barreiro, L. N. López de Lacalle, Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304, J. Cleaner Prod, 139(2016), 440-449
[26] N. A. C. Sidik, S. Samion, J. Ghaderian, M. N. A. W. M. Yazid, Recent progress on the application of nanofluids in minimum quantity lubrication machining: A review, Int. J. Heat Mass Trans, 108(2017) 79-89
[27] M. K. Gupta, P. K. Sood, V. S. Sharma, Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques, J. Cleaner Prod., 135(2016) 1276-1288
[28] A. S. Awale, M. Vashista, M. Z. K. Yusufzai, Multi-objective optimization of MQL mist parameters for eco-friendly grinding, J. Manu. Proc., 56(2020) 75-86
[29] H. Salimi-Yasar, S. Z. Heris, M. Shanbedi, A. Amiri, A. Kameli, Experimental investigation of thermal properties of cutting fluid using soluble oil-based TiO2 nanofluid, Powder Technology, 310 (2017) 213-220
[30] K. Manoj Kumar, A. Ghosh, Assessment of cooling-lubrication and wettability characteristics of nano-engineered sunflower oil as cutting fluid and its impact on SQCL grinding performance, J. Mat. Proc. Tech., 237(2016) 55-64
[31] S. Gürgen, M. A. Sofuo?lubIntegration of shear thickening fluid into cutting tools for improved turning operations, J. Manu. Proc., 56 (2020)1146-1154
[32] P. Rapeti, V. K. Pasam, K. M. R. Gurram, R. S. Revuru, Performance evaluation of vegetable oil-based nano cutting fluids in machining using a grey relational analysis-A step towards sustainable manufacturing, J. Cleaner Prod., 172(2018) 2862-2875
[33] C. F. Uzoh, A. Nnuekwe, O. Onukwuli, S. Ofochebe, C. Ezekannagha, Optimal route for effective conversion of rubber seed oil to biodiesel with desired key fuel properties, J. Cleaner Prod, Available online 12(2020) 124563
[34] R.Pradeepraj, K.Rajan, S. Nallusamy., Impact of 1-Hexanol Fumigation on Diesel engine Emissions using Moringa Oleifera Biodiesel, International Journal of Engineering Trends and Technology 68.11(2020) 150-155.

cutting fluid, flow rate, drop lubrication, rubber seed oil, surface roughness, chip