Fabrication of Bio-Plastic Composite Pellets From Agricultural Waste And Food Waste
Citation
MLA Style: Sherifa ElHady, Omar Amin, Irene Samy Fahim "Fabrication of Bio-Plastic Composite Pellets From Agricultural Waste And Food Waste" International Journal of Engineering Trends and Technology 69.3(2021):133-137.
APA Style:Sherifa ElHady, Omar Amin, Irene Samy Fahim. Fabrication of Bio-Plastic Composite Pellets From Agricultural Waste And Food Waste International Journal of Engineering Trends and Technology, 69(3),133-137.
Abstract
This study aims to produce starch bioplastic pellets from food waste such as potato peels. Measuring the ease of flow of the melt is crucial for producing these pellets. The melt flow index (MFI) is measured in this study to evaluate the consistency of the produced pellets and determine the extent of degradation of the plastic because of molding. This study investigates the effect of adding different fillers to the starch matrix on reducing the MFI value. The fillers used in this work are nano chitosan, nano potato peel, and micro cellulose fillers. The fillers were used with different percentages (0.1%, 0.5%, and 1%). The study showed that increasing the percentage of filler reduces the MFI value. Nano chitosan filler had the highest reducing effect on the MFI value than the other fillers.
Reference
[1] Mihir Patel, Farhaz Rathod, Sarthak Vasava, Rahul Thakor & Prof. Neha Kulshreshtha., Synthesis and Characterization of Bio-Plastics: A Review, International Journal of Engineering Trends and Technology, 67(4) (2019) 8-11 .
[2] E. E. Ferg and L. L. Bolo., A correlation between the variable melt flow index and the molecular mass distribution of virgin and recycled polypropylene used in the manufacturing of battery cases, Polym. Test, 32(8) (2013) 1452–1459. doi: 10.1016/j.polymertesting.2013.09.009.
[3] M. S. de Carvalho, J. B. Azevedo, and J. D. V. Barbosa., Effect of the melt flow index of an HDPE matrix on the properties of composites with wood particles, Polym. Test, 90 (2020) 106678. doi: 10.1016/j.polymertesting.2020.106678.
[4] ASTM., Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer, 8 (2010) 1-16. doi: 10.1520/D1238-13.
[5] P. L. Ramkumar, D. M. Kulkarni, V. V. R. Abhijit, and A. Cherukumudi., Investigation of Melt Flow Index and Impact Strength of Foamed LLDPE for Rotational Moulding Process, Procedia Mater. Sci, 6(1) (2014) 361–367. doi: 10.1016/j.mspro.2014.07.046.
[6] N. Sallih, P. Lescher, and D. Bhattacharyya., Factorial study of material and process parameters on the mechanical properties of extruded kenaf fiber/polypropylene composite sheets, Compos. Part A Appl. Sci. Manuf., 16 (2014) 91–107. doi: 10.1016/j.compositesa.2014.02.014.
[7] P. N. Khanam and M. A. A. AlMaadeed., Processing and characterization of polyethylene-based composites, Adv. Manuf. Polym. Compos. Sci., (2015) 63–79. doi: 10.1179/2055035915Y.0000000002.
[8] M. S. Hamzah, M. Mariatti, and H. Ismail., melt flow index and flammability of alumina, zinc oxide and organoclay nanoparticles filled cross-linked polyethylene nanocomposites, Mater. Today Proc., 17 (2019) 798–802. doi: 10.1016/j.matpr.2019.06.365.
[9] V. Sangeetha, D. Gopinath, R. Prithivirajan, V. Girish Chandran, and R. Manoj Kumar., Investigating the mechanical, thermal and melt flow index properties of HNTs – LLDPE nanocomposites for the applications of rotational molding, Polym.Test, 89 (2020) 106595, doi: 10.1016/j.polymertesting.2020.106595.
[10] P. Bredikhin, Y. Kadykova, I. Burmistrov, T. Yudintseva, I. Ilinykh, and A. Kupava., Preparation of Basalt Incorporated Polyethylene Composite with Enhanced Mechanical Properties for Various Applications, MATEC Web Conf, 96 (2017). doi: 10.1051/matecconf/20179600003.
[11] S. M. Lebedev, O. S. Gefle, E. T. Amitov, D. Y. Berchuk, and D. V. Zhuravlev., Poly(lactic acid)-based polymer composites with high electric and thermal conductivity and their characterization, Polym. Test., 58 (2017) 241–248. doi: 10.1016/j.polymertesting.2016.12.033.
[12] J. Chen, X. Wang, Z. Long, S. Wang, J. Zhang, and L. Wang., Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing, Int. J. Biol. Macromol.,165 (2020) 2295–2302. doi: 10.1016/j.ijbiomac.2020.10.117.
[13] C. wei Zhang, S. S. Nair, H. Chen, N. Yan, R. Farnood, and F. yi Li., Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin-containing cellulose nanofibrils, Carbohydr. Polym., 230 (2020) 115626. doi: 10.1016/j.carbpol.2019.115626.
[14] L. Cheng, D. Zhang, Z. Gu, Z. Li, Y. Hong, and C. Li., Preparation of acetylated nano fibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films, Int. J. Biol. Macromol., 111 (2018) 959–966. doi: 10.1016/j.ijbiomac.2018.01.056.
[15] M. M. Hassan, N. Tucker, and M. J. Le Guen., Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams, Carbohydr. Polym., 230 (2020) 115675. doi: 10.1016/j.carbpol.2019.115675.
[16] N. M. Moo-Tun, G. Iñiguez-Covarrubias, and A. Valadez-Gonzalez., Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design, Polym. Test., 86 (2020). doi: 10.1016/j.polymertesting.2020.106482.
[17] A. Ghanbari, T. Tabarsa, A. Ashori, A. Shakeri, and M. Mashkour., Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties, Carbohydr. Polym., 197 (2018) 305–311. doi: 10.1016/j.carbpol.2018.06.017.
[18] X. Zhu et al., Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels, Innov. Food Sci. Emerg. Technol., 37 (2016) 91–97. doi: 10.1016/j.ifset.2016.08.006.
[19] P. P. Borah, P. Das, and L. S. Badwaik., Ultrasound treated potato peel and sweet lime pomace based biopolymer film development, Ultrason, Sonochem., 36 (2017) 11–19. doi: 10.1016/j.ultsonch.2016.11.010.
[20] E. Bezirhan, “Production of bioplastic from potato peel waste and investigation of its biodegradability,” vol. 03, no. 02, pp. 0–3, 2019, doi: 10.35860/are.420633.
[21] A. Elhussieny, M. Faisal, G. D’Angelo, N. T. Aboulkhair, N. M. Everitt, and I. S. Fahim., Valorisation of shrimp and rice straw waste into food packaging applications, Ain Shams Eng. J., 11(4) (2020) 1219–1226. doi: 10.1016/j.asej.2020.01.008.
[22] N. Everitt, N. Aboulkhair, G. DAngelo, M. Faisal, A. Elhussieny, and I. Gabriel, “Biodegradable Plastics with Natural Additives as a Replacement for Synthetic Plastics,” Int. J. Ind. Syst. Eng., 1(1) (2020) 1. doi: 10.1504/is.2020.10028532.
[23] N. R. Savadekar and S. T. Mhaske., Synthesis of nano cellulose fibers and effect on thermoplastics starch-based films, Carbohydr. Polym., 89(1) (2012) 146–151. doi: 10.1016/j.carbpol.2012.02.063.
[24] M. Fazeli, M. Keley, and E. Biazar., Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers, International Journal of Biological Macromolecules Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers, Int. J. Biol. Macromol., 116 (2018) 272–280. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2018.04.186.
[25] R. Singh and M. S. J. Hashmi., Experimental Investigations for Development of Hybrid Feed Stock Filament of Fused Deposition Modeling Thermal Analysis for Joining of Dissimilar Polymeric Materials Through Friction Stir Welding, (2018).
[26] E. Jamróz, P. Kulawik, and P. Kopel., The effect of nanofillers on the functional properties of biopolymer-based films: A review, Polymers (Basel)., 11(4) (2019) 1–43, doi: 10.3390/polym11040675.
[27] I. Samy, Kareem M. Abd El-Rahman, Amal Elhussieny, M. Faisal, and Nicola. M. Everitt., Fabrication of Green Biopolymeric Nanocomposites, Kaushik Pal, Green Nanomaterials Sustainable Technologies and Applications, in production, Apple Academic Press (AAP) publications, (2021).
[28] G. D’Angelo, A. Elhussieny, M. Faisal, I. S. Fahim, and N. M. Everitt., Mechanical behavior optimization of chitosan extracted from shrimp shells as a sustainable material for shopping bags, J. Funct. Biomater., 9(2) (2018) 1–10. doi: 10.3390/jfb9020037.
[29] N. Albin-Figlewicz, A. Zimoch-Korzycka, and A. Jarmoluk., Antibacterial Activity and Physical Properties of Edible Chitosan Films Exposed to Low-pressure Plasma, Food Bioprocess Technol., 7 (12) (2014) 3646–3654. doi: 10.1007/s11947-014-1379-6.
Keywords
MFI for starch bioplastic, Potato peels, Food wastes, Nano chitosan, Cellulose filler.