ANNs Based Unit for Power Control in a Micro Data Center

ANNs Based Unit for Power Control in a Micro Data Center

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
© 2021 by IJETT Journal
Volume-69 Issue-5
Year of Publication : 2021
Authors : Zakarya Benizza, Ahmed Mouhsen, Ezzitouni Jarmouni
DOI :  10.14445/22315381/IJETT-V69I5P202

How to Cite?

Zakarya Benizza, Ahmed Mouhsen, Ezzitouni Jarmouni, "ANNs Based Unit for Power Control in a Micro Data Center," International Journal of Engineering Trends and Technology, vol. 69, no. 5, pp. 6-10, 2021. Crossref,

Due to climate change, energy efficiency matters, many innovation stratégies converge to integrate renewable energy sources to deal with. In this paper, we are interested in studying a hybrid System composed of a photovoltaic generator, a diesel generator, and a storage battery destinated to insure a redundant power utility for a Micro Data Center. We developed a powerful control unit based on Artificial Neural Networks technology ANNs, in order to manage the power feeding for this sensitive load.

Micro Data Center, ANNs, Hybrid PV System, FPGA, Energy efficiency.

[1] Aicha Djalab et al., Robust Method for Diagnosis and Detection of Faults in Photovoltaic Systems Using Artificial Neural Networks, Periodica Polytechnica Electrical Engineering, and Computer Science, 64(3)(2020) 291–302.
[2] Umashankar Subramaniam et al., A Hybrid PV-Battery System for ON-Grid and OFF-Grid Applications—Controller-In-Loop Simulation Validation, Energies 13(2020) 755; doi:10.3390/en13030755.
[3] Charfi, S., Yahyaoui, I., Ammous, M., & Chaabene, M., Characterisation of an off-grid hybrid system: Modelling and simulation. Paper presented at the 2015 6th International Renewable Energy Congress, IREC 2015, doi:10.1109/IREC.2015.7110926 ., (2020).
[4] Saadaoui, F., Mammar, K., & Hazzab, A., Modeling of a photovoltaic system with maximum power point tracking control by neural networks. International Journal of Power Electronics and Drive Systems, 10(3)(2019) 1575-1591. Retrieved from
[5] Gustavo Soares, d. S., Grandinetti, F. J., Rocha Alves, R. A., & Wendell de, Q. L., Design and simulation of an energy storage system with batteries lead-acid and lithium-ion for an electric vehicle: Battery vs. conduction cycle efficiency analysis. Revista IEEE America Latina, 18(08) (2020) 1345-1352. doi:
[6] Charfi, S., Atieh, A., & Chaabene, M., Modeling and cost analysis for different PV/battery/diesel operating options driving a load in tunisia, Jordan, and KSA. Sustainable Cities and Society, (2016) 25, 49-56. doi:10.1016/j.scs.2016.02.006.
[7] Kumar, V., Ghosh, S., Naidu, N. K. S., Kamal, S., Saket, R. K., & Nagar, S. K., Load voltage-based MPPT technique for standalone PV systems using the adaptive step. International Journal of Electrical Power and Energy Systems, 128 doi:10.1016/j.ijepes.2020.106732, (2021).
[8] M.Kalarathi, K.Jayanthi. A Solar PV Fed Switched Capacitor Boost Circuit for DC Microgrid International Journal of Engineering Trends and Technology, 69(3) 127-132.
[9] 2013 report on the global modular data center (micro data center, data center retrofit; datacenter cooling module; power module; data module; generator module) market. (2013, Dec 05). M2 Presswire Retrieved from
[10] Djalab, A., Rezaoui, M. M., Mazouz, L., Teta, A., & Sabri, N., Robust method for diagnosis and detection of faults in photovoltaic systems using artificial neural networks. Periodica Polytechnica Electrical Engineering and Computer Science, 64(3)(2020) 291-302. doi:10.3311/PPee.14828.
[11] Rodriguez-Delgado, C., & Bergillos, R. J., Wave energy assessment under climate change through artificial intelligence. Science of the Total Environment, 760 doi:10.1016/j.scitotenv.2020.144039., (2021).
[12] Alagha, J. S., Seyam, M., Md Azlin, M. S., & Mogheir, Y., Integrating an artificial intelligence approach with k-means clustering to model groundwater salinity: The case of gaza coastal aquifer (palestine). Hydrogeology Journal, 25(8)(2017) 2347-2361. doi:
[13] Ajni K Ajai, A. Anitha. A Survey on Artificial Intelligence in Cancer Medical and Nonmedical Datasets International Journal of Engineering Trends and Technology, 69(3) 201-210.
[14] Hidayat, R., Fatin, N. J., Ihsan, M. Y., Zabidi, A., Fadhlan Hafizhelmi, K. Z., & Zairi, I. R., Face detection using min-max features enhanced with locally linear embedding. TEM Journal, 7(3)(2018) 678-685. doi:
[15] Zhao, J., Zhang, R., Zhou, Z., Chen, S., Jin, J., & Liu, Q., A neural architecture search method based on gradient descent for remaining useful life estimation. Neurocomputing, 438(2021) 184-194. doi:10.1016/j.neucom.2021.01.072.
[16] Ahmmad, S. K., Jabeen, N., Uddin Ahmed, S. T., Ahmed, S. A., & Rahman, S., Artificial intelligence density model for oxide glasses. Ceramics International, 47(6)(2021) 7946-7956. doi:10.1016/j.ceramint.2020.11.144
[17] Altikat, S., Gulbe, A., Kucukerdem, H. K., & Altikat, A., Applications of artificial neural networks and hybrid models for predicting CO2 flux from soil to atmosphere. International Journal of Environmental Science and Technology, 17(12)(2020) 4719-4732. doi:10.1007/s13762-020-02799-6.
[18] Thamer, K.A., Method of artificial neural networks teaching. Webology, 17(1)(2020) 43-64. Retrieved from
[19] Yacim, J. A., & Boshoff, D. G. B., Impact of artificial neural networks training algorithms on accurate prediction of property values. The Journal of Real Estate Research, 40(3)(2018) 375-418. Retrieved from
[20] Decebal, C. M., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., & Liotta, A., Scalable training of artificial neural networks with sparse adaptive connectivity inspired by network science. Nature Communications, 9(2018) 1-12. doi: Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, A novel ultrathin elevated channel low-temperature poly-Si TFT, IEEE Electron Device Lett. 20(4)(1999) 569–571.
[21] Ravada, B. R., Tummuru, N. R., & Ande, B. N. L., Photovoltaic-wind and hybrid energy storage integrated multisource converter configuration-based grid-interactive microgrid. IEEE Transactions on Industrial Electronics, 68(5)(2021) 4004-4013. doi:10.1109/TIE.2020.2984437
[22] Pérez, E., Pérez, J., Segarra-Tamarit, J., & Beltran, H., A deep learning model for intra-day forecasting of solar irradiance using satellite-based estimations in the vicinity of a PV power plant. Solar Energy, 218(2021) 652-660. doi:10.1016/j.solener.2021.02.033.
[23] Nur Syuhadah, R. T., Mohd Izuan, E. H., Abd Ghani, S. S., Uswatun, H. Z., & Mohd Yunus, A. S., Artificial neural networks (ANNs) and response surface methodology (RSM) approach for modeling the optimization of chromium (VI) reduction by newly Isolated0RW1S34RfeSDcfkexd09rT2., (2019) acinetobacter radioresistens1RW1S34RfeSDcfkexd09rT2 strain NS-MIE from agricultural soil. BioMed Research International, 2019, 14. doi:
[24] Campos, B. A. N., & Motta, J. M. S. T., Online measuring of robot positions using inertial measurement units, sensor fusion and artificial intelligence. IEEE Access, 9, (2021) 5678-5689. doi:10.1109/ACCESS.2020.3048877
[25] Akpolat, A. N., Habibi, M. R., Dursun, E., Kuzucuoglu, A. E., Yang, Y., Dragicevic, T., & Blaabjerg, F., Sensorless control of DC microgrid based on artificial intelligence. IEEE Transactions on Energy Conversion, doi:10.1109/TEC.2020.3044270., (2020).
[26] Oliveira, L. M. C., Koivisto, H., Iwakiri, I. G. I., Loureiro, J. M., Ribeiro, A. M., & Nogueira, I. B. R., Modelling of a pressure swing adsorption unit by deep learning and artificial intelligence tools. Chemical Engineering Science, 224 doi:10.1016/j.ces.2020.115801., (2020).
[27] Manohara H.C, Dr. Gopiya Naik. S, Uday M.J., Dual-mode DC-DC Power Converter for Solar Battery Charger. IJETT International Journal of Electrical and Electronics Engineering 7(7)(2020) 1-5.