Chemical Modification of Starch For The Production of Resistant Starch Type-4 (RS4): A Review

Chemical Modification of Starch For The Production of Resistant Starch Type-4 (RS4): A Review

© 2021 by IJETT Journal
Volume-69 Issue-7
Year of Publication : 2021
Authors : Siti Nurmilah, Edy Subroto
DOI :  10.14445/22315381/IJETT-V69I7P206

How to Cite?

Siti Nurmilah, Edy Subroto, "Chemical Modification of Starch For The Production of Resistant Starch Type-4 (RS4): A Review," International Journal of Engineering Trends and Technology, vol. 69, no. 7, pp. 45-50, 2021. Crossref,

Starch digestibility is closely related to its physiological effects in contributing to calorie needs and blood sugar. Various types of starch modifications have been introduced to control calorie intake. Modification of resistant starch (RS) can be an alternative for controlling calorie and glucose intake. The RS can be obtained by chemically modifying starch to resistant starch type 4 (RS4). RS4 is starch that cannot be hydrolyzed into D-glucose through digestion in the small intestine but will be fermented in the colon. This review describes various production methods, physicochemical characteristics, and applications of RS4 in the food industry. RS4 can be produced from various types of chemically modified starch, including by cross-linking, esterification, transglycosylation, and hydroxypropylated methods. Each method has a different effect on the characteristics of RS4, and this can be adjusted to the starch characteristics needed by the food industry. In addition to producing RS4 with low digestibility, chemically modified starch also has better functional properties according to the type of modification and functional groups added to the starch molecule, so that it can act multifunctional.

Chemical modification, Modification method, Resistant starch type 4, Starch digestibility, Starch modification.

[1] B. Svihus and A. K. Hervik., Digestion and metabolic fates of starch, and its relation to major nutrition-related health problems: A review, Starch/Staerke, 68(3–4) (2016) 302–313, doi: 10.1002/star.201500295.
[2] X. Li., Resistant starch and its applications, in Functional Starch and Applications in Food, Z. Jin, Ed. Singapore: Springer Nature Singapore Pte Ltd, (2018) 63–90.
[3] J. Ye, S. Luo, A. Huang, J. Chen, C. Liu, and D. J. McClements., Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch, Food Hydrocoll., 92(1) (2019) 135–142, doi: 10.1016/j.foodhyd.2019.01.064.
[4] B. A. Ashwar, A. Gani, A. Shah, I. A. Wani, and F. A. Masoodi., Preparation, health benefits and applications of resistant starch - A review, Starch/Staerke, 68(3–4) (2016) 287–301. doi: 10.1002/star.201500064.
[5] M. Aribas, K. Kahraman, and H. Koksel., In vitro glycemic index, bile acid binding capacity and mineral bioavailability of spaghetti supplemented with resistant starch type 4 and wheat bran, J. Funct. Foods, 65(1) (2020) 103778. doi: 10.1016/j.jff.2020.103778.
[6] J. Nissar, T. Ahad, H. R. Naik, and S. Z. Hussain, Resistant Starch- Chemistry and Nutritional Properties, Int. J. Food Sci. Nutr., 2(6) (2017) 95–108.
[7] E. Subroto, R. Indiarto, M. Djali, and H. D. Rosyida., Production and Application of Crosslinking- Modified Starch as Fat Replacer : A Review, Int. J. Eng. Trends Technol., 68(12) (2020) 26–30. doi: 10.14445/22315381/IJETT-V68I12P205.
[8] X. Peng and Y. Yao., Carbohydrates as Fat Replacers, Annu. Rev. Food Sci. Technol., 8 (2017) 331–351. doi: 10.1146/annurev-food- 030216-030034.
[9] A. O. Ashogbon and E. T. Akintayo., Recent trend in the physical and chemical modification of starches from different botanical sources: A review, Starch/Staerke, 66(1–2) (2014) 41–57. doi: 10.1002/star.201300106.
[10] T. Adiyanti and E. Subroto., Modifications Of Banana Starch And Its Characteristics : A Review, Int. J. Sci. Technol. Res., 9(3) (2020) 3–6.
[11] M. C. Sweedman, M. J. Tizzotti, C. Schäfer, and R. G. Gilbert., Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review, Carbohydr. Polym., 92(1) (2013) 905–920, doi: 10.1016/j.carbpol.2012.09.040.
[12] S. Y. Lee, K. Y. Lee, and H. G. Lee., Effect of different pH conditions on the in vitro digestibility and physicochemical properties of citric acid-treated potato starch, Int. J. Biol. Macromol., 107(A) (2018) 1235–124. doi: 10.1016/j.ijbiomac.2017.09.106.
[13] E. Olsson, C. Menzel, C. Johansson, R. Andersson, K. Koch, and L. Järnström., The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid, Carbohydr. Polym., 98(2) (2013) 1505–1513. doi: 10.1016/j.carbpol.2013.07.040.
[14] J.-Q. Mei, D.-N. Zhou, Z.-Y. Jin, X.-M. Xu, and H.-Q. Chen., Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch, Food Chem., 187 (2015) 378–384. doi:
[15] M. Kapelko-?eberska, T. Zi?ba, W. Pietrzak, and A. Gryszkin., Effect of citric acid esterification conditions on the properties of the obtained resistant starch, Int. J. Food Sci. Technol., 51(7) (2016) 1647–1654, doi:
[16] M. M. Sánchez-Rivera, M. del C. Núñez-Santiago, L. A. Bello-Pérez, E. Agama-Acevedo, and J. Alvarez-Ramirez., Citric acid esterification of unripe plantain flour: Physicochemical properties and starch digestibility, Starch/Staerke, 69(9–10) (2017) 1–21. doi: 10.1002/star.201700019.
[17] L. Altuna, M. L. Herrera, and M. L. Foresti., Synthesis and characterization of octenyl succinic anhydride modified starches for food applications, A review of recent literature, Food Hydrocoll., 80(2018) 97–110. doi: 10.1016/j.foodhyd.2018.01.032.
[18] O. Jeong and M. Shin., Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch, Food Chem., 256 (2018) 77–84. doi: 10.1016/j.foodchem.2018.02.098.
[19] Febriani, Rayyana, M. Ulya, F. Oesman, Akhmaloka, and T. M. Iqbalsyah., Low molecular weight alkaline thermostable ?-amylase from Geobacillus sp. nov., Heliyon, 5(7) (2019) 1-7. doi: 10.1016/j.heliyon.2019.e02171.
[20] R. Carmona-Garcia, M. M. Sanchez-Rivera, G. Méndez-Montealvo, B. Garza-Montoya, and L. A. Bello-Pérez., Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca), Carbohydr. Polym., 76(1) (2009) 117–122. doi:
[21] K. S. Woo and P. A. Seib., Cross-linked resistant starch: Preparation and properties, Cereal Chem., 79(6) (2002) 819–825. doi: 10.1094/CCHEM.2002.79.6.819.
[22] M. A. Newman, Q. Zebeli, E. Eberspächer, D. Grüll, T. Molnar, and B. U. Metzler-Zebeli, Transglycosylated starch improves insulin response and alters lipid and amino acid metabolome in a growing pig model, Nutrients, 9(3) (2017) 1–19. doi: 10.3390/nu9030291.
[23] B. Bhuvanachandra and A. R. Podile., A transglycosylating chitinase from Chitiniphilus shinanonensis (CsChiL) hydrolyzes chitin in a processive manner, Int. J. Biol. Macromol., 145 (2020) 1–10. doi: 10.1016/j.ijbiomac.2019.12.134.
[24] H. Y. Kim, J. lin Jane, and B. Lamsal., Hydroxypropylation improves film properties of high amylose corn starch, Ind. Crops Prod., 95 (2017) 175–183. doi: 10.1016/j.indcrop.2016.10.025.
[25] J. Zhao, Z. Chen, Z. Jin, P. Buwalda, H. Gruppen, and H. A. Schols., Effects of granule size of cross-linked and hydroxypropylated sweet potato starches on their physicochemical properties, J. Agric. Food Chem., 63(18) (2015) 4646–4654. doi: 10.1021/jf506349w.
[26] B. J. Hazarika and N. Sit., Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch, Carbohydr. Polym., 140 (2016) 269–278. doi: 10.1016/j.carbpol.2015.12.055.
[27] J. Singh, R. Colussi, O. J. McCarthy, and L. Kaur., Potato Starch and Its Modification, Second Edi. Elsevier Inc., (2016).
[28] C. Wu, R. Sun, Q. Zhang, and G. Zhong, Synthesis and characterization of citric acid esterified canna starch (RS4) by semidry method using vacuum-microwave-infrared assistance, Carbohydr. Polym., 250(8) (2020) 116985. doi: 10.1016/j.carbpol.2020.116985.
[29] R. Remya, A. N. Jyothi, and J. Sreekumar., Comparative study of RS4 type resistant starches derived from cassava and potato starches via octenyl succinylation, Starch/Staerke, 69(7–8) (2017). doi: 10.1002/star.201600264.
[30] E. H. Chun, S. M. Oh, H. Y. Kim, B. Y. Kim, and M. Y. Baik., Effect of high hydrostatic pressure treatment on conventional hydroxypropylation of maize starch, Carbohydr. Polym., 146 (2016) 328–336. doi: 10.1016/j.carbpol.2016.03.067.
[31] K. Thitipraphunkul, D. Uttapap, K. Piyachomkwan, and Y. Takeda., A comparative study of edible canna (Canna edulis) starch from different cultivars, Part I: Chemical composition and physicochemical properties, Carbohydr. Polym., 53(3) (2003) 317–324. doi: 10.1016/S0144-8617(03)00081-X.
[32] J. Singh, L. Kaur, and O. J. McCarthy., Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-A review, Food Hydrocoll., 21(1) (2007) 1–22. doi: 10.1016/j.foodhyd.2006.02.006.
[33] T. A. A. Nasrin and A. K. Anal., Enhanced oxidative stability of fish oil by encapsulating in culled banana resistant starch-soy protein isolate based microcapsules in functional bakery products, J. Food Sci. Technol., 52(8) (2015) 5120–5128. doi: 10.1007/s13197-014- 1606-1.
[34] B. A. Ashwar, A. Gani, A. Gani, A. Shah, and F. A. Masoodi., Production of RS4 from rice starch and its utilization as an encapsulating agent for targeted delivery of probiotics, Food Chem., 239 (2018) 287–294. doi: 10.1016/j.foodchem.2017.06.110.
[35] T. J. Gutiérrez., Plantain flours as potential raw materials for the development of gluten-free functional foods, Carbohydr. Polym., 202(7) (2018) 265–279. doi: 10.1016/j.carbpol.2018.08.121.
[36] S. Djurle, A. A. M. Andersson, and R. Andersson., Effects of baking on dietary fibre, with emphasis on ?-glucan and resistant starch, in barley breads, J. Cereal Sci., 79 (2018) 449–455. doi: 10.1016/j.jcs.2017.10.017.