In Vitro Testing of Implantable Antenna For Glucose Sensing
Citation
MLA Style: Rahul Khadase, Anil Nandgaonkar, Brijesh Iyer, AbhayWagh "In Vitro Testing of Implantable Antenna For Glucose Sensing" International Journal of Engineering Trends and Technology 69.7(2021):109-113.
APA Style:Rahul Khadase, Anil Nandgaonkar, Brijesh Iyer, AbhayWagh . In Vitro Testing of Implantable Antenna For Glucose Sensing International Journal of Engineering Trends and Technology, 69(7),109-113.
Abstract
This article focuses on the design and testing of a compact implantable antenna sensor for continuous glucose monitoring. The main attraction of this article is the verification of an antenna as a glucose sensor. For this particular application, the antenna sensor operating at the WMTS band is demonstrated. This structure is simulated in the Ansys HFSS tool and tested with the blood phantom model with different glucose concentrations. The antenna was fabricated using an easily available low-cost FR-4 substrate with compact dimensions of 25×25×1.6 mm3. The proposed structure demonstrates excellent radiation properties at the resonating frequency of 1.4 GHz with excellent -10 dB bandwidth of 115 MHz. Also, it gives the gain of -12.5 dB. As a sensor, this design shows a sensitivity of 13.1 KHz per mg/dl glucose.
Reference
[1] International Diabetes Federation: Global diabetes plan (2011- 2021).http://www.idf.org/sites/default/files/Global_Diabetes_Plan_ Final.pdf.
[2] Soontornpipit, Pichitpong, Cynthia M. Furse, and You Chung Chung., Design of implantable microstrip antenna for communication with medical implants, IEEE Transactions on Microwave Theory and Techniques 52(8) (2004) 1944-1951.
[3] Kim, Jaehoon, and YahyaRahmat-Samii., Implanted antennas inside a human body: Simulations, designs, and characterizations, IEEE Transactions on microwave theory and techniques 52(8) (2004) 1934-1943.
[4] Kiourti, Asimina, et al., Dual-band implantable antennas for medical telemetry: A fast design methodology and validation for intracranial pressure monitoring, Progress in Electromagnetics Research, 141 (2013) 161-183.
[5] Occhiuzzi Cecilia, et al., RFID Passive Gas Sensor Integrating Carbon Nanotubes, IEEE Trans Microw Theory Techn, 59(10) (2011) 2674–2684.
[6] Manzari Sabina, et al., Humidity Sensing by Polymer-Loaded UHF RFID Antennas, IEEE Sens J,12(9) (2012) 2851–2858.
[7] Chang Fu-Chieh, et al., A Novel Design of Antenna for Biosensing Applications. Proceedings IMCS, (2012) 407–410.
[8] Afroz S, et al., Implantable SiC Based RF Antenna Biosensor for Continuous Glucose Monitoring, IEEE Sens, (2013).
[9] Huang Haiyu, et al., RFID Tag Helix Antenna Sensors for Wireless Drug Dosage Monitoring, IEEE J TranslEng Health Med, 2 (2014) 1–8.
[10] Sanders Jeremiah W, Jun Yao., Haiying Huang. Microstrip Patch Antenna Temperature Sensor. IEEE Sens J., 15(9) (2015) 5312– 5319.
[11] Yao Jun, SaibunTjuatja, Haiying Huang., Real-Time Vibratory Strain Sensing Using Passive Wireless Antenna Sensor, IEEE Sens J, 15(8) (2015) 4338–4345.
[12] Cho Chunhee, et al., Passive Wireless Frequency Doubling Antenna Sensor for Strain and Crack Sensing, IEEE Sens J, 16(14) (2016) 5725-5733.
[13] Khadase, R., and A. Nandgaonkar., Design of Implantable MSA for Glucose Monitoring. In International Conference on Communication and Signal Processing (ICCASP 2016), Atlantis Press, (2016).
[14] Design of an Implantable Antenna Operating at ISM Band Using Magneto-Dielectric Material Zhihao Luan1, Lulu Liu2, Wei-Hua Zong2, *, Zhejun Jin2, and Shandong Li1.
[15] Gani, I. and H. Yoo., Multi-band antenna system for skin implant, IEEE Microw. Wireless Comp. Lett.,. 26(4) (2014) 294–296.
[16] Liu, X. Y., Z. T. Wu, Y. Fan, and E. M. Tentzeri., A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring, IEEE Antennas Wireless Propag. Lett., 16 (2017) 577–580.
[17] Li, H., Y. X. Guo, and S. Q. Xiao., Broadband circularly polarised implantable antenna for biomedical applications, Electro. Lett., 52(7) (2016) 504–506.
[18] Liu, C., Y. X. Guo, R. Jegadeesan, and S. Xiao., In vivo testing of circularly polarized implantable antennas in rats, IEEE Antennas Wireless Propag. Lett., 14 (2015) 783–786.
[19] Liu, C., Y. X. Guo, and S. Qiu., Circularly polarized helical antenna for ISM-band ingestible capsule endoscope systems, IEEE Trans. Antennas Propag., 62(12) (2014) 6027–6039.
[20] Li, H., Y. X. Guo, and S. Q. Xiao., Broadband circularly polarised implantable antenna for biomedical applications, Electro. Lett., 52(7) (2016) 504–506.
[21] Jung, Y. H., Y. Qiu, and S. Lee., A compact Parylene-coated WLAN flexible antenna for implantable electronics, IEEE Antennas Wireless Propag. Lett., 15 (2016) 1382–1385.
[22] Li, H., Y. X. Guo, C. Liu, S. Xiao, and L. Lin., A miniatureimplantable antenna for medradio-band biomedical telemetry, IEEE Antennas Wireless Propag. Lett., 14 (2015) 1176–1179.
[23] ]. Xiao, S., C. Liu, Y. Li, X. M. Yang, and X. Liu., Small-size dualantenna implantable system for biotelemetry devices, IEEE Antennas Wireless Propag. Lett., 15 (2016) 1723–1726.
[24] Xu, L. J., Y. X. Guo, and W. Wu., Bandwidth enhancement of an implantable antenna,” IEEE Antennas Wireless Propag. Lett., 14 (2015) 1510–1513.
[25] Alrawashdeh, R. S., Y. Huang, M. Kod, and A. A. B. Sajak., A broadband flexible implantable loop antenna with complementary split ring resonators,” IEEE Antennas Wireless Propag. Lett., 14 (2015) 1506–1509.
[26] Khadase, Rahul, and Anil Nandgaonkar., Implantable Antenna for Biosensor Devices, Available at SSRN 3572314, (2020).
[27] S. S. Md. Enan, A. Istiaque and M. A. Hossain., Design and Characterization of Miniaturized Implantable PIFA Antenna for MICS Band Application, IEEE Region 10 Symposium (TENSYMP), (2020) 254-257.
[28] Cheung, Cheuk Yin, Joseph SM Yuen, and Steve WY Mung., Miniaturized printed inverted-F antenna for internet of things: A design on PCB with a meandering line and shorting strip, International Journal of Antennas and Propagation ,(2018).
[29] Salim, Ali, RaadFyath, and Jawad Ali., A new miniaturized folded fractal based PIFA antenna design for MIMO wireless applications, In Proceedings of the International Conference on Information and Communication Technology, (2019) 36-40.
[30] Djellid, Asma, Lionel Pichon, Stavros Koulouridis, and FaridBouttout., Miniaturization of a PIFA Antenna for Biomedical Applications Using Artificial Neural Networks, Progress In Electromagnetics Research, 70 (2018) 1-10.
Keywords
PIFA, Implantable antennas, Glucose sensor, MICS, WMTS.