Theoretical Assessment of the Potential of Desilked Silkworm Pupae as Feedstock for Biodiesel Production in India

Theoretical Assessment of the Potential of Desilked Silkworm Pupae as Feedstock for Biodiesel Production in India

© 2021 by IJETT Journal
Volume-69 Issue-7
Year of Publication : 2021
Authors : Dhivya Priya N., Thirumarimurugan M.
DOI :  10.14445/22315381/IJETT-V69I7P218

How to Cite?

Dhivya Priya N., Thirumarimurugan M., "Theoretical Assessment of the Potential of Desilked Silkworm Pupae as Feedstock for Biodiesel Production in India," International Journal of Engineering Trends and Technology, vol. 69, no. 7, pp. 121-131, 2021. Crossref,

Energy sources have become critical to the growth and development of any nation. In recent times, first-world countries have actively engaged themselves in pursuit of clean and reliable energy sources. Waste accumulation in the biosphere has also become a menace. Waste management practices that double as energy harnessing techniques are on the lookout these days. One such practice is the production of biodiesel from organic and putrescible waste. Biodiesel is produced by the conversion of triglycerides to esters of fatty acids. This paper studies the potential of desilked dried silkworm pupae, waste produced from silk reeling units as feedstock for biodiesel production. These pupae have around 40% lipid, which can be tapped for the production of biodiesel. The characteristics of this lipid and its biodiesel produced have been critically evaluated. This pupae biodiesel meets the standards established for B100. India has a capacity of producing 19 million liters of biodiesel from this waster per year. By 2030, around 25 million liters of biodiesel can be produced from dried, desilked silkworm pupae. This study has reinforced that the production of biodiesel from waste pupae is a potential source for energy production and an effective waste management strategy for the industry.

Biodiesel, Sericulture, Waste-management, Silkworm pupae, Pupal oil

[1] B. Looney., Statistical Review of World Energy,69th edition, Bp, (2020) 1–68.
[2] P. Breeze., Chapter 2 - Electricity Generation and the Environment, in Power Generation Technologies (Second Edition), Second Edi., P. Breeze, Ed. Boston: Newnes, (2014) 15–27.
[3] I. E. A. IEA., Key World Energy Statistics, International Energy Agency publication, (2020).
[4] C. Footprint., Carbon footprint, 2008-05-10)[2012-10-01]. http://www, carbonfoot-print. com/carbonfootprint, html. (2008).
[5] F. Barbir, T. N. Veziro?lu, and H. J. Plass Jr., Environmental damage due to fossil fuels use, Int. J. Hydrogen Energy, 15(10) (1990) 739–749.
[6] J. Liiv, I. Zekker, K. Tamm, and E. Rikmann., Greenhouse gases emission and climate change-beyond mainstream, MOJ Biorg Org Chem, 4(1) (2020) 11–16.
[7] P. Janakiraman, M. Gajendiran, and N. Nallusamy., Performance and emission characteristics of diesel engine fueled with diesel, bio diesel and additives, in AIP Conference Proceedings, 2161(1) (2019) 020023.
[8] United States Environmental Protection Agency, Overview of the Human Health and Environmental Effects of Power Generation : Focus on Sulfur Dioxide ( SO 2 ), Nitrogen Oxides ( NO X ) and Mercury ( Hg ), US EPA, Clear Skies Act, no. X. .
[9] J. E. Jonson, J. Borken-Kleefeld, D. Simpson, A. Ny’iri, M. Posch, and C. Heyes., Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe, Environ. Res. Lett., 12(9) (2017) 94017.
[10] B. K. Bose., Global Warming: Energy, Environmental Pollution, and the Impact of Power Electronics, IEEE Ind. Electron. Mag., 4(1) (2010) 6–17. doi: 10.1109/MIE.2010.935860.
[11] W. Stafford, A. Lotter, A. Brent, and G. von Maltitz., Biofuels technology: A look forward, (2017).
[12] N. D. Priya et al., A Study on Optimization of Pretreatment for Lipid Extraction from Rice Husk Using Oleaginous Yeast, in Waste Valorisation and Recycling, Springer, (2019) 263–272.
[13] F. Ma and M. A. Hanna., Biodiesel production : a review 1, Bioresour. Technol., 70 (1999) 1–15.
[14] C. V. Sagar and N. A. Kumari., Sustainable biofuel production from water Hyacinth (Eicchornia crassipes), Int J Eng Trends Technol, 4(10) (2013) 4454–4458.
[15] N. B. Ahmed, B. K. Abdalla, I. H. M. Elamin, and Y. Ibrahim., Biodiesel Production from Roselle Oil Seeds and Determination the Optimum Reaction Conditions for the Transesterification Process, Int. J. Eng. Trends & Tech, 39 (2016) 105–111.
[16] I. Nuhu, F. M. Sani, and I. A. Rufai., Investigation of corrossion effects of jatropha biodiesel on the injector of an engine fuel system, Int. J. Eng. Trends Technol., 8(1) (2014) 9–13.
[17] F. Aydin, H. Oguz, and H. Ogut., Fuel property investigation of diesel and mustard oil biodiesel mixtures at different ratios, Int. J. Eng. Trends Technol., 18(2) (2014) 99–102.
[18] A. A. Mamun, S. Siddiqua, and S. M. E. Babar., Selection of an efficient method of biodiesel production from vegetable oil based on fuel properties, Int J Eng Trends Technol, 4(8) (2013) 3289– 3293.
[19] R. K. Abdulrahman., Effect of Reaction Temperature on the Biodiesel Yield from Waste cooking Oil and chicken fat, Int. J. Eng. Trends Technol., 44 (2017).
[20] V. Manieniyan and S. Sivaprakasam., Vibration analysis in DI diesel engine using diesel and biodiesel, Int. J. Eng. Trends Technol., 1(4) (2013) 3586–3589.
[22] N. D. Priya and M. Thirumarimurugan., Biodiesel—A Review on Recent Advancements in Production, Bioresour. Util. Bioprocess,(2020) 117–129.
[23] T. W. Charpe and V. K. Rathod., Biodiesel production using waste frying oil, Waste Manag., 31(1) (2011) 85–90
[24] T. Sabudak and M. Yildiz., Biodiesel production from waste frying oils and its quality control, Waste Manag., 30(5) (2010) 799–803,.
[25] Y. Zhang, M. A. Dube, D. D. Mclean, and M. Kates, Biodiesel production from waste cooking oil : 1 . Process design and technological assessment, Bioresour. Techology, 89(1) (2003) 1– 16. doi: 10.1016/S0960-8524(03)00040-3.
[26] Z. Yaakob, M. Mohammad, M. Alherbawi, Z. Alam, and K. Sopian., Overview of the production of biodiesel from waste cooking oil, Renew. Sustain. energy Rev., 18 (2013)184–193.
[27] W. Parawira., Biodiesel production from Jatropha curcas: A review, Sci. Res. Essays, 5(14) (2010) 1796–1808.
[28] M. Y. Koh and T. I. M. Ghazi., A review of biodiesel production from Jatropha curcas L. oil, Renew. Sustain. energy Rev., 15(5) (2011) 2240–2251.
[29] S. Gmünder, R. Singh, S. Pfister, A. Adheloya, and R. Zah, Environmental impacts of Jatropha curcas biodiesel in India, J. Biomed. Biotechnol., 2012 (2012)
[30] G. A. K. Vivek and A. K. Gupta., Biodiesel production from Karanja oil, J. Sci. Ind. Res. (India)., 63(1) (2004) 39–47.
[31] Y. C. Sharma and B. Singh., Development of biodiesel from karanja, a tree found in rural India, Fuel, 87(8-9) (2008) 1740– 1742.
[32] R. L. Patel and C. D. Sankhavara., Biodiesel production from Karanja oil and its use in diesel engine: A review, Renew. Sustain. Energy Rev., 71 (2017) 464–474.
[33] R. A. Holser and R. Harry-O’Kuru., Transesterified milkweed (Asclepias) seed oil as a biodiesel fuel, Fuel, vol. 85(14-15) (2006) 2106–2110.
[34] Z. W. M. M. Phoo et al., Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel, Ind. Crops Prod., 54 (2014) 226–232.
[35] S. Pinzi, I. L. Garcia, F. J. Lopez-Gimenez, M. D. de Castro, G. Dorado, and M. P. Dorado., The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications, Energy & Fuels, 23(5) (2009) 2325–2341.
[36] A. E. Atabani et al., Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production, Renew. Sustain. energy Rev., 18 (2013) 211–245.
[37] I. B. Bankovi?-Ili?, O. S. Stamenkovi?, and V. B. Veljkovi?., Biodiesel production from non-edible plant oils, Renew. Sustain. Energy Rev., 16(6) (2012) 3621–3647.
[38] A. Kumar and S. Sharma., Potential non-edible oil resources as biodiesel feedstock: an Indian perspective, Renew. Sustain. Energy Rev., 15(4) (2011) 1791–1800.
[39] M. K. Lam and K. T. Lee., Microalgae biofuels: a critical review of issues, problems and the way forward, Biotechnol. Adv., 30(3) (2012) 673–690.
[40] Y. Chisti, Biodiesel from microalgae, Biotechnol. Adv., 25(3) (2007) 294–306.
[41] Y. Li, M. Horsman, N. Wu, C. Q. Lan, and N. Dubois-Calero., Biofuels from microalgae, Biotechnol. Prog., vol. 24(4) (2008) 815–820.
[42] T. M. Mata, A. A. Martins, and N. S. Caetano., Microalgae for biodiesel production and other applications: a review, Renew. Sustain. energy Rev., 14(1) (2010) 217–232.
[43] D. E. Leiva-Candia, S. Pinzi, M. D. Redel-Mac’ias, A. Koutinas, C. Webb, and M. P. Dorado., The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel, Fuel, 123 (2014) 33–42.
[44] A. Patel, N. Arora, J. Mehtani, V. Pruthi, and P. A. Pruthi., Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production, Renew. Sustain. Energy Rev., 77 (2017) 604–616.
[45] M. Spagnuolo, A. Yaguchi, and M. Blenner., Oleaginous yeast for biofuel and oleochemical production, Curr. Opin. Biotechnol., 57 (2019) 73–81.
[46] F. Manzano-Agugliaro, M. J. Sanchez-Muros, F. G. Barroso, A. Mart’inez-Sánchez, S. Rojo, and C. Pérez-Bañón, Insects for biodiesel production, Renew. Sustain. Energy Rev., 16(6) (2012) 3744–3753.
[47] C.-H. Su, H. C. Nguyen, T. L. Bui, and D.-L. Huang., Enzymeassisted extraction of insect fat for biodiesel production, J. Clean. Prod., 223 (2019) 436–444.
[48] H. C. Nguyen, S.-H. Liang, S.-S. Chen, C.-H. Su, J.-H. Lin, and C.-C. Chien, Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: optimization by using response surface methodology, Energy Convers. Manag., 158 (2018) 168–175.
[49] M. Gürü, B. D. Artukouglu, A. Keskin, and A. Koca., Biodiesel production from waste animal fat and improvement of its characteristics by synthesized nickel and magnesium additive, Energy Convers. Manag., 50(3) (2009) 498–502.
[50] J. M. Dias, M. C. M. Alvim-Ferraz, and M. F. Almeida., Production of biodiesel from acid waste lard, Bioresour. Technol., 100(24) (2009) 6355–6361.
[51] G. M. Tashtoush, M. I. Al-Widyan, and M. M. Al-Jarrah., Experimental study on evaluation and optimization of conversion of waste animal fat into biodiesel, Energy Convers. Manag., 45(17) (2004) 2697–2711.
[52] P. Adewale, M.-J. Dumont, and M. Ngadi., Recent trends of biodiesel production from animal fat wastes and associated production techniques, Renew. Sustain. Energy Rev., 45 (2015) 574–588.
[53] A. Keskin, M. Gürü, D. Altiparmak, and K. Aydin., Using of cotton oil soapstock biodiesel--diesel fuel blends as an alternative diesel fuel, Renew. Energy, 33(4) (2008) 553–557.
[54] M. J. Haas., Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock, Fuel Process. Technol., 8(10) (2005) 1087–1096.
[55] E. Öztürk., Performance, emissions, combustion and injection characteristics of a diesel engine fuelled with canola oil--hazelnut soapstock biodiesel mixture, Fuel Process. Technol., 129 (2015) 183–191.
[56] C.-Y. Lin and R.-J. Li., Fuel properties of biodiesel produced from the crude fish oil from the soapstock of marine fish, Fuel Process. Technol., 90(1)(2009) 130–136.
[57] S. Sridhara and J. V Bhat., Lipid composition of the silkworm Bombyx mori L., J. Insect Physiol., 11(4)(1965) 449–462, doi:
[58] G. Ganga and S. C. J, An Introduction to Sericulture, 2nd ed. Oxford & IBH Publishing Co. Pvt. Ltd., 2018.
[59] T. A. Bhat and T. Choure., Study of growth and instability in raw silk production and marketing in India, Eur. J. Bus. Manag., 6(14)(2014) 108–111.
[60] D. Gangopadhyay., Sericulture Industry in India – A Review, India, Sci. Technol. Rural India Incl. Growth, 47(5)(2008) 1–25 [Online]. Available:
[61] M. N. Padamwar and A. P. Pawar., Silk sericin and its applications: A review, (2004).
[62] Y.-Q. Zhang., Applications of natural silk protein sericin in biomaterials, Biotechnol. Adv., 20(2)(2002) 91–100.
[63] M. Manjunath, K. C., Narayanaswamy, Savithramma, S. H. Babu, and H. V Harishkumar, Scenario of mulberry and cocoon production in major silk producing States of India-Application of exponential growth function, Indian J. Econ. Dev., 3(8)(2015).
[64] R. Bukhari, K. P. Singh, and R. H. Shah., Non : Mulberry Sericulture, J. Pharmacogn. Phytochem.,8(4)(2019) 311–323.
[65] S. K. Dewangan, K. R. Sahu, K. V Achari, and others., Sericulture-A tool of eco-system checking through tribal, J. Environ. Res. Dev., vol. 6, no. 1, pp. 165–173, 2011.
[66] E. O. Oduor, L. Ciera, V. Adolkar, and O. Pido., Physical characterization of eri silk fibers produced in Kenya, J. Nat. Fibers, 18(1)(2021) 59–70.
[67] C. Kalita., Study of Physical Properties of Muga and Eri with the Help of Xrd (Undegummed), Confluence, 1(1) (2014) 78–85.
[68] K. V Benchamin, V. Rao, and P. J. Raju., Effect of cold storage of newly hatched larvae on survival rate, growth and egg production in silkwormBombyx mori L., Proc. Anim. Sci., 98(1)(1989) 27– 33.
[69] T. Yokoyama., Sericulture, Annu. Rev. Entomol.,8(1) (1963) 287–306.
[70] N. MN and others., Manual on sericulture, silkworm rearing, 2(1973).
[71] T. Karthik and R. Rathinamoorthy, Sustainable silk production. Elsevier Ltd, (2017).
[72] K. S. Shinde, S. B. Avhad, S. V Jamdar, and C. J. Hiware., Comparative studies on the performance of mountages on cocoon quality of Bombyx mori L, Trends life Sci., 1(2012) 8–11.
[73] S. D. Aznar-Cervantes, A. Pagan, B. M. Santesteban, and J. L. Cenis., Effect of different cocoon stifling methods on the properties of silk fibroin biomaterials, Sci. Rep., 9(1) (2019) 1–11.
[74] M. R. A. O. NR, S. TS, and others., Manual on sericulture. 3(1972) silk reeling.
[75] M. ?ochy?ska and J. Frankowski., The biogas production potential from silkworm waste, Waste Manag., 79(2018) 564– 570,doi:
[76] S. R. Patil, S. Amena, A. Vikas, P. Rahul, K. Jagadeesh, and K. Praveen., Utilization of silkworm litter and pupal waste-an ecofriendly approach for mass production of Bacillus thuringiensis, Bioresour. Technol., 131(2013) 545–547.
[77] A. Karthikeyan and N. Sivakumar., Sericulture pupal waste—A new production medium for mass cultivation of Bacillus thuringiensis, Indian J. Biotechnol., 6(2007) 57–559.
[78] D. S. Mahesh, B. S. Vidhathri, T. K. Narayanaswamy, C. T. Subbarayappa, R. Muthuraju, and P. Shruthi., A Review – Bionutritional Science of Silkworm Pupal residue to Mine New ways for utilization, Int. J. Adv. Res. Biol. Sci, 2(9) (2015) 135– 140.
[79] N. R. Pradeep, S. Kumarappa, and B. M. Kulkarni., Characterization and Evaluation of Fuel Properties of Pupae Biodiesel-Diesel Blends, Int. J. Latest Technol. Eng. Manag. Appl. Sci.,6(8)(2017) 85–90.
[80] V. Nadanakumar, A. A. Arivalagar, and N. Alagumurthi., Studies on Production and Optimization of silkworm biodiesel, J. Chem. Pharm. Sci., 9(4)(2016) 3063–3069.
[81] M. G. M. Sarma., Production of high quality biodiesel from desilked muga pupae (Antheraea assamensis), Res. J. Chem. Environ. Sci.,4(4)(2016) 40–45.
[82] R. Ravikumar, H. Kumar, K. Kiran, and G. S. Hebbar, ., Extraction and Characterization of Biofuel from Industrial Waste organic Pupae-Silkworm, Int. J. Recent Technol. Eng., 8(3)(2019) 1603–1607.
[83] K. S. Shanker et al., Isolation and characterization of neutral lipids of desilked eri silkworm pupae grown on castor and tapioca leaves, J. Agric. Food Chem., 54(9)(2006) 3305–3309.
[84] Z.-J. Wei, A.-M. Liao, H.-X. Zhang, J. Liu, and S.-T. Jiang.,Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology, Bioresour. Technol., 100(18)(2009) 4214–4219.
[85] T. Ravinder, S. S. Kaki, S. Kanjilal, B. Rao, S. K. Swain, and R. B. N. Prasad., Refining of castor and tapioca leaf fed eri silkworm oils, Int. J. Chem. Sci. Technol., 5(2)(2015) 32–37.
[86] B. S. Vidhathri et al., Isolation and detection of alpha linolenic acid from silkworm pupal residue oil (Bombyx mori L.) using HPLC, Int. J. Curr. Microbiol. Appl. Sci., 6(7)(2017) 2202–2206.
[87] B. Hu et al., Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities, Food Chem., 231(2017) 348– 355.
[88] L. F. Bautista, G. Vicente, R. Rodriguez, and M. Pacheco., Optimisation of FAME production from waste cooking oil for biodiesel use, Biomass and Bioenergy, 33(5)(2009) 862–872.
[89] E. F. Aransiola, M. O. Daramola, T. V. Ojumu, M. O. Aremu, S. K. Layokun, and B. O. Solomon., Nigerian Jatropha curcas oil seeds: prospect for biodiesel production in Nigeria., Int. J. Renew. ENERGY Res., 2(2)(2012)317–325.
[90] S. O’Donnell, I. Demshemino, M. Yahaya, I. Nwadike, and L. Okoro., A review on the spectroscopic analyses of biodiesel, Eur. Int. J. Sci. Technol., 2(7)(2013) 137–146.
[91] G. Gelbard, O. Bres, R. M. Vargas, F. Vielfaure, and U. F. Schuchardt., 1H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol, J. Am. Oil Chem. Soc., 72(10)(1995) 1239–1241.
[92] J. Nisar et al., Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst, Renew. Energy, 101(2017) 111–119.
[93] M. Qasim, T. M. Ansari, and M. Hussain., Combustion, performance, and emission evaluation of a diesel engine with biodiesel like fuel blends derived from a mixture of Pakistani waste canola and waste transformer oils, Energies, 10(7)(2017) 1023.
[94] N. Isioma, Y. Muhammad, O. Sylvester, D. Innocent, and O. Linus., Cold flow properties and kinematic viscosity of biodiesel, Univers. J. Chem., 1(4)(2013) 135–141.
[95] E. Lois, E. L. Keating, and A. K. Gupta., Fuels, in Encyclopedia of Physical Science and Technology (Third Edition), Third Edit., R. A. Meyers, Ed. New York: Academic Press, (2003) 275–314.
[96] K. Wadumesthrige, J. C. Smith, J. R. Wilson, S. O. Salley, and K. Y. S. Ng., Investigation of the parameters affecting the cetane number of biodiesel, J. Am. Oil Chem. Soc., 85(11)(2008) 1073– 1081.
[97] Ö. Can., Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture, Energy Convers. Manag., 87(2014) 676–686.
[98] M. R. Uddin, K. Ferdous, M. R. Uddin, M. R. Khan, and M. A. Islam., Synthesis of biodiesel from waste cooking oil., Chem. Eng. Sci., 1(2)(2013) 22–26.
[99] Bureau of Indian Standards, IS 1460:2017, Automotive diesel - Specification (Bharat Stage IV). (2017).
[100] Bureau of Indian Standards, IS 15607:2005, Bio-diesel (B100) Blend Stock for Diesel Fuel - Specification. (2005).
[101] L. Gouveia et al., Biodiesel from microalgae, in Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End- Products, (2017) 235–258.
[102] S. Banga and P. K. Varshney., Effect of impurities on performance of biodiesel: A review, J. Sci. Ind. Res., vol. 69(2010) 575–579.
[103] P. B. L. Fregolente, W. M. Wolf Maciel, and L. S. Oliveira., Removal of water content from biodiesel and diesel fuel using hydrogel adsorbents, Brazilian J. Chem. Eng., 32(4)(2015) 895– 901.
[104] V. Thangarasu and R. Anand., 11 - Physicochemical fuel properties and tribological behavior of aegle marmelos correa biodiesel, in Advances in Eco-Fuels for a Sustainable Environment, K. Azad, Ed. Woodhead Publishing, (2019) 309–336.
[105] J. N. Conceição et al., Evaluation of molecular spectroscopy for predicting oxidative degradation of biodiesel and vegetable oil: Correlation analysis between acid value and UV--Vis absorbance and fluorescence, Fuel Process. Technol., 183(2019) 1–7.
[106] R. A. de Mattos, F. A. Bastos, and M. Tubino., Correlation between the composition and flash point of diesel-biodiesel blends, J. Braz. Chem. Soc., 26(2)(2015) 393–395.
[108] K. Central Silk Board, Bengaluru., RAW SILK PRODUCTION STATISTICS, (2020).
[109] K. Central Silk Board, Bengaluru., SERICULTURAL STATISTICS IN INDIA - A GLANCE, (2020).
[110] U. F. A. Service., India biofuels annual, IN9080, 2009, [Online]. Available: GAIN Publications/General Report_New Delhi_India_6-12-2009.pdf.