T-S3RA: Traffic-Aware Scheduling for Secure Slicing and Resource Allocation in SDN/NFVEnabled 5G Networks
How to Cite?
Ali J. Ramadhan, "T-S3RA: Traffic-Aware Scheduling for Secure Slicing and Resource Allocation in SDN/NFVEnabled 5G Networks," International Journal of Engineering Trends and Technology, vol. 69, no. 7, pp. 215-232, 2021. Crossref, https://doi.org/10.14445/22315381/IJETT-V69I7P229
Abstract
Network slicing and resource allocation play pivotal roles in software-defined network (SDN)/network function virtualization (NFV)-assisted 5G networks. In 5G communications, the traffic rate is high, necessitating high data rates and low latency. Deep learning is a potential solution for overcoming these constraints. Secure slicing avoids resource wastage; however, DDoS attackers can exploit the sliced network. Therefore, we focused on secure slicing with resource allocation under massive network traffic. Traffic-aware scheduling is proposed for secure slicing and resource allocation over SDN/NFV-enabled 5G networks. In this approach (T-S3RA), user devices are authenticated using Boolean logic with a password-based key derivation function. The traffic is scheduled in 5G access points, and secure network slicing and resource allocation are implemented using deep learning models such as SliceNet and HopFieldNet, respectively. To predict DDoS attackers, we computed the Renyi entropy for packet classification. Experiments were conducted using a network simulator with 250 nodes in the network topology. Performance was evaluated using metrics such as throughput, latency, packet transmission ratio, packet loss ratio, slice capacity, bandwidth consumption, and slice acceptance ratio. T-S3RA was implemented in three 5G use cases with different requirements, including massive machine-type communication, ultra-reliable low-latency communication, and enhanced mobile broadband.
Keywords
Deep learning, Dynamic off-loading, Network slicing, Resource allocation, Traffic scheduling
Reference
[1] M. Alenezi, K. Almustafa and K. A. Meerja., Cloud based SDN and NFV architectures for IoT infrastructure, Egyptian Informatics Journal, 20(1) (2019) 1-10. https://doi.org/10.1016/j.eij.2018.03.004.
[2] A. A. Barakabitze, A. Ahmad, R. Mijumbi and A. Hines., 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges,” Computer Networks, 167 (2020)106984. https://doi.org/10.1016/j.comnet.2019.106984.
[3] S. Barmpounakis, N. Maroulis, M. Papadakis, G. Tsiatsios, D. Soukaras and N. Alonistioti., Network slicing-enabled RAN management for 5G: Cross layer control based on SDN and SDR, Computer Networks, 166 (2020) 106987. https://doi.org/10.1016/j.comnet.2019.106987.
[4] J. S. Walia, H. Hämmäinen, K. Kilkki and S. Yrjölä., 5G network slicing strategies for a smart factory, Computers in Industry, 11(2019)108-120. https://doi.org/10.1016/j.compind.2019.07.006.
[5] P. Borylo, M. Tornatore, P. Jaglarz, N. Shahriar, P. Cho?da and R. Boutaba., Latency and energy-aware provisioning of network slices in cloud networks, Computer Communications, 157 1-9. https://doi.org/10.1016/j.comcom.2020.03.050.
[6] F. Boutigny, S. Betgé-Brezetz, G. Blanc, A. Lavignotte, H. Debar and H. Jmila., Solving security constraints for 5G slice embedding: A proof-of-concept, Computers and Security, 89 (2020) 101662. https://doi.org/10.1016/j.cose.2019.101662.
[7] L. Tang, G. Zhao, C. Wang, P. Zhao and Q. Chen., Queue-aware reliable embedding algorithm for 5G network slicing, Computer Networks, 146 (2018) 138-150. https://doi.org/10.1016/j.comnet.2018.09.014.
[8] Y. Kim, S. Kim and H. Lim., Reinforcement learning based resource management for network slicing, Applied Sciences, 9(11) (2019) 2361. https://doi.org/10.3390/app9112361.
[9] M. R. Raza, C. Natalino, P. Öhlen, L. Wosinska and P. Monti., Reinforcement learning for slicing in a 5G flexible RAN, Journal of Lightwave Technology, 37(20) (2019) 5161-5169. https://doi.org/10.1109/JLT.2019.2924345.
[10] A.J. Ramadhan., Implementation of 5G FBMC PHYDYAS prototype filter, International Journal of Applied Engineering Research, 12(23) (2019) 13476–13481.
[11] T. Ma, Y. Zhang, F. Wang, D. Wang and D. Guo., Slicing resource allocation for eMBB and URLLC in 5G RAN, Wireless Communications and Mobile Computing, (2020) 1-11. https://doi.org/10.1155/2020/6290375.
[12] E. Coronado, S. N. Khan and R. Riggio., 5G-EmPOWER: A software-defined networking platform for 5G radio access networks, IEEE, Transactions on Network and Service Management, 16(2) (2019) 715-728.https://doi.org/10.1109/TNSM.2019.2908675.
[13] V. N. Sathi, M. Srinivasan, P. K. Thiruvasagam and S. R. Murthy., Novel protocols to mitigate network slice topology learning attacks and protect privacy of users’ service access behavior in softwarized 5G networks, IEEE Transactions on Dependable and Secure Computing, (2020) 1. https://doi.org/10.1109/TDSC.2020.2968885.
[14] A. Thantharate, R. Paropkari, V. Walunj, C. Beard and P. Kankariya, Secure5G: A deep learning framework towards a secure network slicing in 5G and beyond, Proceedings of the 10th Annual Computing and Communication Workshop and Conference (CCWC), (2020) 0852-72020.
[15] J. Ni, X. Lin and X. S. Shen., Efficient and secure service-oriented authentication supporting network slicing for 5G-enabled IoT, IEEE Journal on Selected Areas in Communications, 36(3) (2018) 644- 657. https://doi.org/10.1109/JSAC.2018.2815418.
[16] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini and H. Flinck., Network slicing and softwarization: A survey on principles, enabling technologies, and solutions, IEEE Communications Surveys and Tutorials, 20(3) (2018) 2429-2453. https://doi.org/10.1109/COMST.2018.2815638.
[17] S. K. Tayyaba, H. A. Khattak, A. Almogren, M. A. Shah, I. Ud Din, I. Alkhalifa and M. Guizani., 5G vehicular network resource management for improving radio access through machine learning, IEEE Access, 8 (2020) 6792-6800. https://doi.org/10.1109/ACCESS.2020.2964697.
[18] Q. Ye, W. Zhuang, S. Zhang, A. L. Jin, X. Shen and X. Li., Dynamic radio resource slicing for a two-tier heterogeneous wireless network, IEEE Transactions on Vehicular Technology, 67(10) (2018) 9896- 9910. https://doi.org/10.1109/TVT.2018.2859740.
[19] A.J. Ramadhan., Implementation of a 5G filtered-OFDM waveform candidate, International Journal of Engineering Research and Technology, 12(4) (2019) 500–507.
[20] S. Costanzo, I. Fajjari, N. Aitsaadi and R. Langar, Dynamic network slicing for 5G IoT and eMBB services: A new design with prototype and implementation results, Proceedings of 3rd Cloudification of the Internet of Things (CIoT), (2018) 1-7.
[21] A. Kammoun, N. Tabbane, G. Diaz, A. Dandoush and N. Achir., End-to-end efficient heuristic algorithm for 5G network slicing, Proceedings of 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), (2018) 386-392.
[22] R. Trivisonno, M. Condoluci, X. An and T. Mahmoodi, mIoT slice for 5G systems: Design and performance evaluation, Sensors, 18(2) (2018) 635. https://doi.org/10.3390/s18020635.
[23] I. Šeremet and S. ?auševi?, “Benefits of using 5G network slicing to implement vehicle-to-everything (V2X) technology, Proceedings of2019 IEEE 18th International Symposium INFOTEH-JAHORINA (INFOTEH), (2019) 1-6.
[24] T. Wang, Z. Guo, H. Chen and W. Liu, “BWManager: Mitigating denial of service attacks in software-defined networks through bandwidth prediction, IEEE Transactions on Network and Service Management, 15(4) (2018) 1235-1248. https://doi.org/10.1109/TNSM.2018.2873639.
[25] P. Porambage, Y. Miche, A. Kalliola, M. Liyanage and M. Ylianttila., Secure keying scheme for network slicing in 5G architecture, Proceedings of IEEE Conference on Standards for Communications and Networking (CSCN), (2019) 1-6.
[26] X. Li, C. Guo, L. Gupta and R. Jain., Efficient and secure 5G core network slice provisioning based on VIKOR approach, IEEE Access, 7 (2019) 150517-150529. https://doi.org/10.1109/ACCESS.2019.2947454.
[27] L. Ma, X. Wen, L. Wang, Z. Lu and R. Knopp., An SDN/NFV based framework for management and deployment of service based 5G core network, China Communications, 15(10) (2018) 86-98. https://doi.org/10.1109/CC.2018.8485472.
[28] S. Dawaliby, A. Bradai and Y. Pousset., Distributed network slicing in large scale IoT based on coalitional multi-game theory, IEEE Transactions on Network and Service Management, 16(4) (2019) 1567-1580. https://doi.org/10.1109/TNSM.2019.2945254.
[29] S. A. AlQahtani., An efficient resource allocation to improve QoS of 5G slicing networks using general processor sharing-based scheduling algorithm, International Journal of Communication Systems, 33(4) (2020) e4250.https://doi.org/10.1002/dac.4250.
[30] K. Koutlia, R. Ferrús, E. Coronado, R. Riggio, F. Casadevall, A. Umbert and J. Pérez-Romero., Design and Experimental Validation of a Software-Defined Radio Access Network Testbed with Slicing Support, Wireless Communications and Mobile Computing, 2019 (2019) 1-17. https://doi.org/10.1155/2019/2361352.
[31] A.J. Ramadha., Overview and implementation of the two most important candidate 5G waveforms, Journal of Theoretical and Applied Information Technology, 97(9) (2019) 2551–2560.
[32] R. A. Addad, M. Bagaa, T. Taleb, D. L. C. Dutra and H. Flinck., Optimization model for cross-domain network slices in 5G networks, IEEE Transactions on Mobile Computing, 19(5) (2019) 1156-1169. https://doi.org/10.1109/TMC.2019.2905599.
[33] A. S. D. Alfoudi, S. H. S. Newaz, A. Otebolaku, G. M. Lee and R. Pereira., An efficient resource management mechanism for network slicing in a LTE network, IEEE Access, 7 (2019) 89441-89457. https://doi.org/10.1109/ACCESS.2019.2926446.
[34] O. Narmanlioglu, E. Zeydan and S. S. Arslan., Service-aware multiresource allocation in software-defined next generation cellular networks, IEEE Access, 6 (2018) 20348-20363. https://doi.org/10.1109/ACCESS.2018.2818751.
[35] M. Afaq, J. Iqbal, T. Ahmed, U. l. Islam, M. Khan and M. S. Khan., Towards 5G network slicing for vehicular ad-hoc networks: An endto- end approach, Computer Communications, 149 (2020) 252-258. https://doi.org/10.1016/j.comcom.2019.10.018.
[36] H. D. R. Albonda and J. Pérez-Romero., An efficient RAN slicing strategy for a heterogeneous network with eMBB and V2X services, IEEE Access, 7 (2019) 44771-44782. https://doi.org/10.1109/ACCESS.2019.2908306.
[37] N. Van Huynh, D. T. Hoang, D. N. Nguyen and E. Dutkiewicz., Optimal and fast real-time resource slicing with deep dueling neural networks, IEEE Journal on Selected Areas in Communication, 37(6) (2019) 1455-1470.
[38] M. Aicardi, R. Bruschi, F. Davoli, P. Lago and J. F. Pajo., Decentralized scalable dynamic load balancing among virtual network slice instantiations, Proceedings of IEEE Globecom Workshops (GC Wkshps), (2018) 1-7.
[39] P. Wang, J. Lan and S. Chen., OpenFlow based flow slice load balancing, China Communications, 11(12) (2014) 72-82. https://doi.org/10.1109/CC.2014.7019842.
[40] F. Chahlaoui, M. R. El-Fenni and H. Dahmouni., Performance analysis of load balancing mechanisms in SDN networks, Proceedings of 2nd International Conference on Networking, Information Systems and Security, (20190 1-8.
[41] S. Kamath, S. Singh and M. S. Kumar., Multiclass queueing network modeling and traffic flow analysis for SDN-enabled mobile core networks with network slicing, IEEE Access, 8 (2019) 417-430. https://doi.org/10.1109/ACCESS.2019.2959351.
[42] H. Chergui and C. Verikoukis., Offline SLA-constrained deep learning for 5G networks reliable and dynamic end-to-end slicing, IEEE Journal on Selected Areas in Communication, 38(2) (2019) 350-360.https://doi.org/10.1109/JSAC.2019.2959186.
[43] S. A. AlQahtani and W. A. Alhomiqani., A multi-stage analysis of network slicing architecture for 5G mobile networks, Telecommunication Systems, 73(2) (2020) 205-221. https://doi.org/10.1007/s11235-019-00607-2.
[44] A.J. Ramadhan., Overview and Comparison of Candidate 5G Waveforms: FBMC, UFMC, and F-OFDM, International Journal of Modern Education and Computer Science,(2021).Accepted.
[45] K. Park, J. Li and S. C. Feng., Scheduling policies in flexible Bernoulli lines with dedicated finite buffers, Journal of Manufacturing Systems, 48(A) (2018) 33-48. https://doi.org/10.1016/j.jmsy.2018.05.013.
[46] F. A. M. Md. Zaki and T. S. Chin., FWFS: Selecting robust features towards reliable and stable traffic classifier in SDN, IEEE Access, 7 (2019) 166011-166020, https://doi.org/10.1109/ACCESS.2019.2953565.