Design of A Single Electromagnetic Braille Cell

Design of A Single Electromagnetic Braille Cell

© 2021 by IJETT Journal
Volume-69 Issue-8
Year of Publication : 2021
Authors : Muhamad Zulhelmi bin Mohd Nizam, Shaharil bin Mad Saad, Mohamed Bin Hussein, Zair Asrar Ahmad, Mohd Azlan Suhaimi
DOI :  10.14445/22315381/IJETT-V69I8P219

How to Cite?

Muhamad Zulhelmi bin Mohd Nizam, Shaharil bin Mad Saad, Mohamed Bin Hussein, Zair Asrar Ahmad, Mohd Azlan Suhaimi, "Design of A Single Electromagnetic Braille Cell," International Journal of Engineering Trends and Technology, vol. 69, no. 8, pp. 155-160, 2021. Crossref,

Visually impaired usually use a universal code called a braille system for them to read and visualize images by using their haptic sense without using their eye. Over the few years, with the advent of technology, many assistive technologies have been developed and are widely accessible for the visually impaired community. However, educational braille-based and current assistive technology for visually impaired people to read and visualize, such as electronic braille display, is still lacking. This is due to the fact that most of the braille cell used in commercializing braille display is actuated by piezo bimorph actuator. This system is not the only complex due to the arrangement of the piezo strip, but it is also expensive to produce a braille display system. Moreover, its braille cell based on piezoelectric actuator also has the limited feature, where it can support to display single-line sentence only due to the arrangement and nature of piezo bimorph. This research aims to design a single braille cell based on electromagnetic actuator technology. The braille cell can support multiple lines of the sentence, is cost-effective, and has the same performance as a commercial braille display. In order to determine suitable design parameters and evaluates the performance of fabricated braille cells, an experiment is done with three levels of factors, one for a number of turns and the other is diameter which are 100, 200, and 300 turns and 0.1, 0.3, and 1.0mm. The result shows, regardless of wire diameter for coil, the minimum current required to lift the dot will remain the same for the same number of turns. The final number of turns and diameter selected is 300 turns, and 0.1mm and required minimum value of current 0.08A to lift the dot.

Braille Cell, Electromagnetic Actuator, Cost- Effective, Stereolithography, Electrical discharge Machining.

[1] A. Russomanno, S. O’Modhrain, R. B. Gillespie, and M. W. M. Rodger, Refreshing refreshable braille displays, IEEE Trans. Haptics, 8(3) (2015) 287–297.doi: 10.1109/TOH.2015.2423492.
[2] M. E. Adnan, N. M. Dastagir, J. Jabin, A. M. Chowdhury, and M. R. Islam, A cost-effective electronic braille for visually impaired individuals, 5th IEEE Reg. 10 Humanit. Technol. Conf. 2017, R10- HTC 2017, 2018(2018) 175–178. doi: 10.1109/R10- HTC.2017.8288932.
[3] A. M. Muntasir Rahman, S. Mahmud Khandaker, N. N. Saleheen, T. Nobi Afee, N. Afrin, and M. A. Alam., A portable braille refreshable display using micro servos, Jt. 7th Int. Conf. Informatics, Electron. Vis. 2nd Int. Conf. Imaging, Vis. Pattern Recognition, ICIEV-IVPR (2019) 212–217. doi: 10.1109/ICIEV.2018.8641028.
[4] M. Benali-Khoudja, M. Hafez, and A. Kheddar, VITAL: An electromagnetic integrated tactile display, Displays, 28(3) (2007) 133–144. doi: 10.1016/j.displa.2007.04.013.
[5] G. H. Feng and S. Y. Hou, Investigation of tactile bump array actuated with ionic polymer-metal composite cantilever beams for refreshable braille display application, Sensors Actuators, A Phys., 275 (2018) 137–147. doi: 10.1016/j.sna.2018.04.007.
[6] Md. Ehtesham Adnan, Noor Muhammad Dastagir, Jafrina Jabin, Ahmed Masud Chowdhury, Mohammad Rezaul Islam, A cost effective electronic braille for visually impaired individuals, IEEE Region 10 Humanitarian Technology Conference (R10-HTC), (2017) 1–6.doi: 10.1109/R10-HTC.2017.8288932.
[7] Dimitar N. Karastoyanov, Lyubka A. Doukovska, and Vassia K. Atanassova, Electromagnetic Linear Micro Drives for Braille Screen: Characteristics, Control and Optimization, Third International Conference on Telecommunications and Remote Sensing, (2014) 1–6.
[8] Jun Su Lee; S. Lucyszyn, A micromachined refreshable braille cell, IEEE Journal, (2005) 673 - 682.
[9] F. Ba?çiftçi and A. Eldem, An interactive and multi-functional refreshable Braille device for the visually impaired, Displays, 41 (2016) 33–41. doi: 10.1016/j.displa.2015.11.001.
[10] H. Parekh, S. Shah, F. Patel, and H. Vyas, Gujarati Braille Text Recognition : A Review, 5–10. doi: 10.090592/IJCSC.2016.003.
[11] C. Jayant, C. Acuario, W. A. Johnson, J. Hollier, and R. E. Ladner, V-Braille: Haptic Braille Perception using a touch-screen and vibration on mobile phones, ASSETS’10 - Proc. 12th Int. ACM SIGACCESS Conf. Comput. Access., (2010) 295–296. doi: 10.1145/1878803.1878878.
[12] J. S. Lee and S. Lucyszyn, A micromachined refreshable Braille cell, J. Microelectromechanical Syst., 14(4) (2005) 673–682. doi: 10.1109/JMEMS.2005.845415.
[13] D. N. Karastoyanov and V. K. Kotov, Electromagnetic Linear Microdrive for Braille Screen: Control and Circuit Test, Int. J. Mater. Sci. Eng., 3(1) (2015) 1–6. doi: 10.12720/ijmse.3.1.1-6.
[14] M. Karpelson, R. Pena, and R. J. Wood, “Low-Cost Electromechanical Actuator Arrays for Tactile Display Applications, Proc. - IEEE Int. Conf. Robot. Autom., (2018) 471– 476.doi: 10.1109/ICRA.2018.8460909.
[15] M. Benali-Khoudja, M. Hafez, J. M. Alexandre, A. Kheddar, and V. Moreau, VITAL: A new low-cost vibro-TActiLe display system, Proc. - IEEE Int. Conf. Robot. Autom., 2004(1) (2004) 721–726. doi: 10.1109/robot.2004.1307234.