Biodiesel Production and Characterization for Croton Oil Methyl Ester and Its Blends with Graphene and Graphene Oxide Nanoparticles

Biodiesel Production and Characterization for Croton Oil Methyl Ester and Its Blends with Graphene and Graphene Oxide Nanoparticles

© 2021 by IJETT Journal
Volume-69 Issue-12
Year of Publication : 2021
Authors : Koffi Gawonou Amégnona Djagni, Hiram Ndiritu, Meshack Hawi, Robert Kiplimo
DOI :  10.14445/22315381/IJETT-V69I12P214

How to Cite?

Koffi Gawonou Amégnona Djagni, Hiram Ndiritu, Meshack Hawi, Robert Kiplimo, "Biodiesel Production and Characterization for Croton Oil Methyl Ester and Its Blends with Graphene and Graphene Oxide Nanoparticles," International Journal of Engineering Trends and Technology, vol. 69, no. 12, pp. 120-126, 2021. Crossref,

The production of biodiesel from non-edible oil feedstock is gaining attention around the world as a sustainable alternative to fossil diesel that poses no threat to food security. Hence providing motivation to explore new and potential sources. Croton oil was used to make biodiesel in this study through the transesterification process, and the viscosity, density, calorific value, and flash point are some of the properties tested for comparison with corresponding properties of fossil diesel. Properties of diesel-biodiesel blends and blends with nanoparticles (Graphene and Graphene Oxide) were tested to establish the effect of nanoparticles on biodiesel properties. The best transesterification conditions for biodiesel production were found to be Croton oil to methanol ratio of 1:1, stirring frequency of 310 Hz, temperature of 60-65°C, and reaction time of 1 hour. The physicochemical properties of the Croton methyl ester were found to lie within the range of existing biodiesel standards. Fourier Transform Infra-red (FTIR) analysis revealed comparable spectra for Croton methyl ester and diesel. The addition of graphene and graphene oxide nanoparticles in proportions of 25 ppm, 50 ppm, and 100 ppm showed a marginal effect on both the density and viscosity of the fuel blends and a slight increase in the calorific fuel value.

Biodiesel, Diesel, Fourier Transform Infra-red (FTIR), Nanoparticles, Transesterification

[1] P. A. Owusu and S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues, and climate change mitigation, Cogent Eng., 3(1) (2016) 1–14. doi: 10.1080/23311916.2016.1167990.
[2] G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters, Fuel Process. Technol., 86(10) (2005) 1059–1070. doi: 10.1016/j.fuproc.2004.11.002.
[3] M. Mofijur, M. G. Rasul, N. M. S. Hassan, H. H. Masjuki, M. A. Kalam, and H. M. Mahmudul, Assessment of physical, chemical, and tribological properties of different biodiesel fuels, Clean Energy Sustain. Dev. Comp. Contrasts New Approaches, (2017) 441–463, doi: 10.1016/B978-0-12-805423-9.00014-4.
[4] F. Ma and M. A. Hanna, Biodiesel production : a review 1, 70 (1999) 1–15.
[5] L. Chen, T. Liu, W. Zhang, X. Chen, and J. Wang, Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion, Bioresour. Technol., 111 (2012) 208–214 doi: 10.1016/j.biortech.2012.02.033.
[6] G. Kafuku, M. K. Lam, J. Kansedo, K. T. Lee, and M. Mbarawa, Croton megalocarpus oil: A feasible non-edible oil source for biodiesel production, Bioresour. Technol., 101(18) (2010) 7000–7004. doi: 10.1016/j.biortech.2010.03.144.
[7] G. Kafuku and M. Mbarawa, Biodiesel production from Croton megalocarpus oil and its process optimization, Fuel, 89(9) (2010) 2556–2560. doi: 10.1016/j.fuel.2010.03.039.
[8] M. Meira, C. M. Quintella, E. M. O. Ribeiro, H. R. G. Silva, and A. K. Guimarães, Overview of the challenges in the production of biodiesel, Biomass Convers. Biorefinery, 5(3) (2015) 321–329. doi: 10.1007/s13399-014-0146-2
[9] A. N. A. Aryee, F. R. Van De Voort, and B. K. Simpson, FTIR determination of free fatty acids in fish oils intended for biodiesel production, 44 (2009) 401–405. doi: 10.1016/j.procbio.2008.12.004.
[10] J. S. Oliveira, R. Montalv, L. Daher, P. A. Z. Suarez, and J. C. Rubim, Determination of methyl ester contents in biodiesel blends by FTIR-ATR and FTNIR spectroscopies,69 (2006) 1278–1284. doi: 10.1016/j.talanta.2006.01.002.
[11] M. Rosset and O. W. Perez-Lopez, FTIR spectroscopy analysis for monitoring biodiesel production by the heterogeneous catalyst, Vib. Spectrosc., 105 (2019) 102990. doi: 10.1016/j.vibspec.2019.102990.
[12] X. Zhang, S. Yan, and R. D. Tyagi, Biodiesel Production by Transesteri fi cation, (2009) 27–52.
[13] P. Verma, M. P. Sharma, and G. Dwivedi, Potential use of eucalyptus biodiesel in compressed ignition engine, Egypt. J. Pet., 25(1) (2016) 91–95. doi: 10.1016/j.ejpe.2015.03.008.
[14] M. M. Roy, W. Wang, and J. Bujold, Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel – diesel and canola oil – diesel blends at high idling operations, Appl. Energy, 106 (2013) 198–208. doi: 10.1016/j.apenergy.2013.01.057.
[15] R. H. B. and R. K. P. Krishnamurthi P., FTIR studies of hydrogen bonding interaction between the hydroxyl and carbonyl liquids, Behav. Cogn. Psychother., 35(3) (2007) 273–282. doi: 10.1017/S135246580700358X.
[16] J. Coates, Encyclopedia of Analytical Chemistry -Interpretation of Infrared Spectra, A Practical Approach, Encycl. Anal. Chem., (2004) 1–23.
[17] J. L. White, Interpretation of infrared spectra of soil minerals, Soil Sci., 112(1) (1971) 22–31. doi: 10.1097/00010694-197107000-00005.
[18] W. B. Zhang, Review on analysis of biodiesel with infrared spectroscopy, Renew. Sustain. Energy Rev., 16(8) (2012) 6048–6058.doi: 10.1016/j.rser.2012.07.003.
[19] C. V. N. Abbe, R. Nzengwa, R. Danwe, Z. M. Ayissi, and M. Obounou, Simulation of a DI Diesel Engine Performance Fuelled on Biodiesel Using a Semi-Empirical 0D Model, Energy Power Eng., 5(10) (2013) 596–603. doi: 10.4236/epe.2013.510066.
[20] A. Bayu, D. Nandiyanto, R. Oktiani, and R. Ragadhita, Indonesian Journal of Science & Technology How to Read and Interpret FTIR Spectroscopy of Organic Material, Indones. J. Sci. Technol., 4(1) (2019) 97–118.
[22] T. Elangovan, G. Anbarasu, and L. Jeryrajkumar, Development of calophyllum inophyllum biodiesel and analysis of its properties at different blends, Int. J. ChemTech Res., 9(4) (2016) 220–229.