Optimization of Dielectric Parameters for the Design of Optical Bandpass Filters
How to Cite?
Jegan Antony Marcilin, N.M. Nandhitha, G. Yogalakshmi, "Optimization of Dielectric Parameters for the Design of Optical Bandpass Filters," International Journal of Engineering Trends and Technology, vol. 70, no. 3, pp. 13-21, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I1P202
Abstract
With the advent of technology, it is possible to design thin film optical bandpass filters for the desired wavelength and Full-Width Half Maximum (FWHM). A stack of high and low refractive index thin films of suitable thickness can result in the desired wavelength (as the amplitude of other wavelengths are attenuated and amplitude of the desired wavelength is amplified). The choice of the dielectric material, the thickness of the dielectric materials, and the stacking options of these dielectric materials affect the interference pattern. The proposed research work aims at developing optimization techniques for the selection of thin films and the number of layers to be deposited. In this paper, the design of the H alpha filter (656.3 nm), H beta (486.1 nm), and Carbon III (464.7nm) is discussed. The dielectric materials are Magnesium Fluoride and Zinc Sulphide. The impact of stacking and thickness on the attenuation of wavelengths is also studied.
Keywords
Central Wavelength (CWL), H alpha, H Beta, Full Wave Half Maximum (FWHM).
Reference
[1] S.Pimenta, S.Cardaso, A.Miranda, P.DeBeule, E.M.S.Castanheira and G.Minas, “Design and fabrication of Sio2 / Tio2 and Mgo / Tio2 based high selective optical filters for diffuse reflectance and fluorescence signal extraction, biomedical opticas express, b(8) (2015) 3084-3098 (2015)
[2] R.Kitsomboonlaha, C.Ngambenjawong, W.S.Mohammed, M.B.Chaudhari, G.L.Hornyak, J.Dutta, Plasmon resonance tuning of gold and silver nanoparticle –insulator multi-layered composite structure for optical filters,micro&nano letters, 6(6) (2011) 342- 344.
[3] Dr.gaillanH.Abdullah, Dr.Bushra Mahdi, Nahla.A.Al.Jabar, design thin film narrow band-pass filters for dense wavelength division multiplexing, International Journal of Advances in Applied Science (IJAAS), 1(2) (2012) 65-70.
[4] D.M. Beggs, M.A. Kaliteevski, S. Brand and R. A . Abram,” Optimization of an optical filter with a square-shaped passband based on coupled microcavities, journal of modern optics, 51(3) (2009) 437-446 (2009).
[5] Saeed N.Turki, Optimization Design of Band Pass Filter in The Infrared Region, international journal of Emerging trends of technology in computer science (IJETTCS), 4(2) ISSN 2278-6856.
[6] W .P. Ng, W. Loedhammacakra, Z. Ghassemlooy, and R.A. Cryan, characterization of a parallel optical all-pass filter for chromatic dispersion equalization in 10 GB/s system, IET Circuits Devices Syst., 2(1) 112-118.
[7] H.Arabshahiand M. Asmari, optimum designing of thin-film filter layers of sio2 and snTe based on optical particle swarm optimizer, International Journal of physical sciences, 5(1) 057-061
[8] Thoma A. Cusick, Stavros Iezekiel, Robert E. Miles, An evolutionary solution to synthesis problem of optimal all-optical microwave filters, IEEE, 0-7803-3951-7/97.
[9] S.Tibulaec, R.Magnusson, Narrow – linewidth bandpass filters with diffractive thin-film layers, optical letters, 26(9) 584-586.
[10] Francesco Paresce, Christopher Burrows and Keith Horne, The structure of the inner R aquariII nebula in the light of H? and [NII] ?6584 emission, The astrophysical journal, 318-325.
[11] Zaheer Abbas Khan, Rachana Kumar, Waleed S.Mohammed, Gabar L. Hornyak, Joydeepdutta, optical thin film filters by colloidal gold and silica nanoparticles prepared by a layer-bylayer self-assembly method, Springer science +business media, DOI 10.1007/s 10853-011-5651-0.
[12] Dmitry N.Chigrin and CliviaM.Sotomayortorres, Periodic thinfilm interference filters as one-dimensional photonic crystal, aexiv: cond-mat 0008182v3
[13] S.W.Xue, X.T.Zu, W.L.Zhou, H.X.Deng, X.Xiang, L.Zhanga, H.Denga, Effects of post- thermal annealing on the optical constants of Zno thin films, ELSEVIER, Journal of alloys and compound, 448 21-28.
[14] William L Barens, Surface Plasmon-Polariton length scales: a route to sub-wavelength optics, Journal of Optics A: pure and applied optics, S87-93, DOI:10.1088/1464-4258/8/4/S06
[15] Mukul Agrawal and Peter Peumans, Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells, Optics Express, 16(8) 5385-5396.
[16] Mikhail A. Kats, Romain Blanchard, Patrice Genevet and Federico Capasso, Nanometer optical coatings based on strong interference effects in lightly absorbing media, nature materials letters, DOI:10.1038/NMAT3443.
[17] IgnacyGrycrynaski, Joanna malicka, Kazimierz Nowaczyk , Zygmunt Gryczymki and Joseph R.Coakowicz, Effects of sample thickness on the optical properties of surface Plasmon-coupled emission, J.phy, chem.B,108(32) 12073-12083.
[18] Stephen Wedge and W.L.Barnes. Surface plasmon-polariton mediated light emission through thin metal films, Optical Society of America, 12(16) 3673-3685.
[19] Dennis Hohlfeld and Hans Zappe, An all-dielectric tunable filter based on the thermo- optic effect, Journey of optics a purr and Applied Optics, DOI:10.1088/1468-4258/6/6/002.
[20] Yun-Rei chan, Jan-Hon Lin, Chin-Chang Hsu, and Hsieh, Nearresonant high order non-linear absorption of Zno thin films, Optical Society of America, 16(24). 19900-19908.
[21] Peter B.Catyse and Shanhui Fan, Nanopatterned metallic films for use as a transparent conductive electrode in Optoelectronic Devices Nano letters, 10, DOI: 10.1021/ni1011239, 2944-2949.
[22] Gilberto Brambilla, Vittoria Finazzi, and David J. Richardson, Ultra-low-loss optical fiber nanotapers, Optics express, 12(10) 2258-2263.
[23] Kazunori Suzuki, Hirokazu Kubota, Satokikawanishi, Optical properties of a low-loss polarization-maintaining photonic crystal fiber, Optical Society of A Erica, 9(13) 676-680.
[24] Pranav M. Joshirao, Jae Won Shin, Chirag K.Vyas, Atul D.Kulkarni, Hojoong Kim, Taesung Kim, Seung-WooHong, Vijay K.Machonda, Development of optical monitor of alpha radiations based on CR-39, Applied radiation and isotopes, ELSEVIER, 184-189.
[25] Atul Kulkarni, Byeonghoonkim, Sreekanth Reddy Dugasani, Pranav Joshirao, Jang Ah Kim, Clirag Vyas, Vijay machanda, Taesung Kim, Ha Park, A novel nanometric DNA thin film as a sensor for alpha radiation, Scientific Reports, DOI:10.1038/step02062.
[26] A.Bortolon, W.W.Heidbrink, and M.Podesta, A tangentially viewing fast-ion D-alpha diagnostic for NSTX, American Institute of Physics, 10D728-4.
[27] Santame Banerjee, J.Ghosh, R.machanda, R.Dey, N.Ramasubramanian, M.B.Chowdhuri, Ketan, M.Patel, Vinay Kumar, P.Vasu, P.K.Chattopadhyay, P.K.Atrey, and Aditya team, Observation of H? emission profiles in Aditya tokamak, J.plasma fusion res.SERIES, 9 29-32.
[28] AtushiIwamae, Masayuki Hayakawa, Makoto Atake, and Takashi Fujimoto, Polarization resolved H? spectra from the large helical device: emission location, temperature, and inward flux of neutral hydrogen, American Institute of Physics, DOI:10.1063/1.1855323.
[29] S.O’Kuffe, H.Lewis, Polymer optical fiber IN-SITU monitoring of gamma radiation process, International journal on smart sensing and intelligent system, 2(3) 490-500.
[30] E.L.Foley, F.M.Levinton, Sensitive dependence by hydrogen Balmer-alpha laser-induced fluorescence signal from neutral hydrogen beam on background magnetic field, Journal of Applied Physics, 98 093101-1-8.
[31] Matthias Moosman, Petra Ritta, Ina Krastel, Andrea Brink, Sebastian these, Felix Blankenbury, Birol Taskin, Hellmuth Orbing, and Arno Villringer, Correlates of alpha rhythms in functional magnetic resonance imaging and near-infrared spectroscopy, Neuroimage, 145-158.
[32] YoichoiHanoaka, Hiroki Kurokawa, Shinzo Enome,1Hiroshi Nakajima, Kiyoto Shibasaki, MasonariNishio, Toshiaki Takano, Chikayoshi Torii, Hidaeki Sekiguchi, Susumu Kawashima, Takushi Bushimata,1Noriyuki Shinohara, et al., Smiulationeous observations of a prominence eruption followed by a coronal arcade formation in radio, soft x-ray and H?, PASJ, 46 205-216.
[33] J.Caplan and L.Deharveng, Absolute H? and H? photometry of LMC HII region, Astrometry and Astrophysics supplement series, 62 63-104.
[34] Felix C.M.Bettonil, Robert H.hammer, peter Sijherlin, Robert J.Rutten , AsuinP.L.Jagers, GuusliepenSliepen , Tunable H-alpha lyot filter with advanced servo system and image processing: Instrument design and new scientific results with the Dutch open telescope”, SPIE , 6269 1-12.
[35] J.P.Sivan, A new look at the interstellar hydrogen through a verywide field photographic H? survey of the whole Milky Way, Astro.astrophysics.suppl., 16 163-172.
[36] Richard C.Canfield, Kenneth G.Gayley, Impulse v diagnostics of electron-beam heated solar flare model chromosphere, The Astrophysical Journal, 322 999-1009.
[37] Xuan Feng, Yue Yu, Cai Liu, and Michel Fehler, Combination of H? decomposition and migration of enhancing subsurface target classified of GPR, IEEE transactions on geoscience and remote sensing, 53(9) 4852-4861.
[38] Asl, A.B., Rostami, A. & Amiri, I.S. Terahertz bandpass filter design using multilayer metamaterials., Opt Quant Electron, 52 (2020) 155.
[39] H. Wang, L. Yang, and L. Zhang, A Proposal for Low-Loss Optical Bandpass Filter with Narrow Bandwidth and High Roll- Off Rate, in International Photonics and Optoelectronics Meeting , (2019). (OFDA, OEDI, ISST, PE, LST, TSA), OSA Technical Digest (Optical Society of America, 2019), paper OTu2B.5.