Experimental Effect of Cassava Starch and Rice Husk Ash on Physical and Mechanical Properties of Concrete

Experimental Effect of Cassava Starch and Rice Husk Ash on Physical and Mechanical Properties of Concrete

© 2022 by IJETT Journal
Volume-70 Issue-2
Year of Publication : 2022
Authors : Bassirou Kone, John N. Mwero, Erick K. Ronoh
DOI :  10.14445/22315381/IJETT-V70I2P239

How to Cite?

Bassirou Kone, John N. Mwero, Erick K. Ronoh, "Experimental Effect of Cassava Starch and Rice Husk Ash on Physical and Mechanical Properties of Concrete," International Journal of Engineering Trends and Technology, vol. 70, no. 3, pp. 334-341, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I2P239

This study focused on assessing the suitability of using rice husk ash (RHA) to partially replace cement and cassava starch(CS) as a natural admixture in fresh and hardened concrete production. This was achieved by experimentally establishing the engineering properties of RHA and cassava starch (CS). CS and RHA were incorporated separately and jointly in different mixtures. The individual and combined effects of CS and RHA were monitored with respect to various properties of fresh and hardened concrete. 16 mixtures were designed in which CS ranged from 0, 1, 1.5 and 2% and RHA from 0, 10, 15, 20% in a mixing ratio of 1:1.87:3.62, with the cement-to-water ratio of 0.5. Specimens were cured for 7, 14, 28, 56 and 90 days. The results indicated that CS and RHA prolonged the setting time of cement; the optimum of 1% CS and 10% RHA gave good strength development.

Cassava starch, Rice husk ash, Setting time, workability, Density, Compressive strength, Splitting tensile strength.

[1] J. Liu, H. Zhou, and P. Ouyang, Effect of straw mixing amount on mechanical properties of admixture-adding hollow block, J. Wuhan Univ. Technol. Mater. Sci. Ed., 28(3) (2013) 508–513, doi: 10.1007/s11595-013-0722-5.
[2] Q. Wen et al., Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde, Bioresour. Technol., 102(2) (2011) 942–947, doi: 10.1016/j.biortech.2010.09.042.
[3] L. Crépy, V. Miri, N. Joly, P. Martin, and J. M. Lefebvre, Effect of side-chain length on the structure and thermomechanical properties of fully substituted cellulose fatty esters, Carbohydr. Polym., 83(4) (2011) 1812–1820, doi: 10.1016/j.carbpol.2010.10.045.
[4] ASTM C618, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. USA: ASTM International, (2005).
[5] BS EN 933-1, the Particle size distribution of aggregate. London, UK: British Standards Institution, (2012).
[6] BS EN 196-2, chemical properties of cement. London, UK, (2013).
[7] BS 8500-2, The mix design. London, UK, (2012).
[8] BS EN 206, admixture proportion. London, UK, (2013).
[9] BS EN 12390:2, Casting curing of concrete. London, UK, (2009).
[10] BS EN 196-3, setting time and soundness of cement. London, UK, (2016).
[11] BS EN 12350-2, Consistency of fresh concrete by slump test. London, UK, (2009).
[12] BS EN 12390-7, determining the density of hardened concrete. London, UK, (2019).
[13] BS EN 12390:3, determining compressive strength. London, UK, (2009).
[14] BS EN 12390-6, determining tensile strength. London, UK, (2009).
[15] ASTMC C33, Particle-size distribution. USA: ASTM International, (2003).
[16] BS 812-103.1, the particle size distribution of coarse aggregate. London, UK, (1985).
[17] A. Kumar et al., The filler effect: The influence of filler content and type on the hydration rate of tricalcium silicate, J. Am. Ceram. Soc., 100(7) (2017) 3316–3328, doi: 10.1111/jace.14859.
[18] J. J. M. Swinkels, Composition and Properties of Commercial Native Starches, Starch ? Stärke, 37(1) (1985) 1–5, doi: 10.1002/star.19850370102.
[19] G. Road and A. Centre, Quality Characteristics, Root Yield and Nutrient Composition of S Ix Cassava ( Manihot esculenta Crantz ) Varieties, (18) (2013) 1–13.
[20] M. Leonel, T. S. de Freitas, and M. M. Mischan, Physical characteristics of extruded cassava starch, Sci. Agric., 66(4) (2009) 486–493, doi: 10.1590/s0103-90162009000400009.
[21] S. A. Oyeyinka, A. A. Adeloye, S. A. Smith, B. O. Adesina, and F. F. Akinwande, Physicochemical properties of flour and starch from two cassava varieties, Agrosearch, 19(1) (2019) 28, doi: 10.4314/agrosh.v19i1.3.
[22] C. E. Chinma, C. C. Ariahu, and J. O. Abu, Chemical composition, functional and pasting properties of cassava starch and soy protein concentrate blends, J. Food Sci. Technol., 50(6) (2013) 1179–1185, doi: 10.1007/s13197-011-0451-8.
[23] M. Schirmer, A. Höchstötter, M. Jekle, E. Arendt, and T. Becker, Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio, Food Hydrocoll., 32(1) (2013) 52–63, doi: 10.1016/j.foodhyd.2012.11.032.
[24] K. Ganesan, K. Rajagopal, and K. Thangavel, Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete, Constr. Build. Mater., 22(8) (2008) 1675–1683 doi: 10.1016/j.conbuildmat.2007.06.011.
[25] N. K. Krishna, S. Sandeep, and K. M. Mini, Study on concrete with partial replacement of cement by rice husk ash, IOP Conf. Ser. Mater. Sci. Eng., 149(1) (2016), doi: 10.1088/1757-899X/149/1/012109.
[26] M. a. Givi, A. N., Abdul Rashid, S., Abdul Aziz, F. N. & Mohd Salleh, Contribution of Rice Husk Ash to the Properties of Mortar and Concrete : A Review, J. Am. Sci., 6(3) (2010) 157–165.
[27] A. El-Dakroury and M. S. Gasser, Rice husk ash (RHA) as cement admixture for immobilization of liquid radioactive waste at different temperatures, J. Nucl. Mater., 381(3) (2008) 271–277, doi: 10.1016/j.jnucmat.2008.08.026.
[28] J. J. Brooks, M. A. Megat Johari, and M. Mazloom, Effect of admixtures on the setting times of high-strength concrete, Cem. Concr. Compos., 22(4) (2000) 293–301, doi: 10.1016/S0958-9465(00)00025-1.
[29] A. Popova, G. Geoffroy, M. F. Renou-Gonnord, P. Faucon, and E. Gartner, Interactions between polymeric dispersants and calcium silicate hydrates, J. Am. Ceram. Soc., 83(10) (2000) 2556–2560, doi: 10.1111/j.1151-2916.2000.tb01590.x.
[30] K. H. Tsao, FIMP dark matter freeze-in gauge mediation and hidden sector, J. Phys. G Nucl. Part. Phys., 45(7) (2018) 830–842, doi: 10.1088/1361-6471/aac3b9.
[31] A. A. Akindahunsi and W. Schmidt, Effect of cassava starch on shrinkage characteristics of concrete†, African J. Sci. Technol. Innov. Dev., 11(4) (2019) 441–447, doi: 10.1080/20421338.2017.1380580.
[32] O. Zaid, J. Ahmad, M. S. Siddique, and F. Aslam, Effect of Incorporation of Rice Husk Ash Instead of Cement on the Performance of Steel Fibers Reinforced Concrete, Front. Mater., 8 (2021) 1–14, doi: 10.3389/fmats.2021.665625.
[33] C. Marthong, Effect of Rice Husk Ash (RHA) as Partial Replacement of Cement on Concrete Properties, Int. J. Eng. Res. Technol., 1(6) (2012) 1–3.
[34] K. Kartini, M. . Nurul Nazierah, M. . Zaidahtulakmal, and G. Siti Aisyah, Effects of Silica in Rice Husk Ash (RHA) in producing High Strength Concrete, Int. J. Eng. Technol., 2(12) (2012) 1951–1956.
[35] P. Chindaprasirt and S. Rukzon, Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar, Constr. Build. Mater., 22(8) (2008) 1601–1606, doi: 10.1016/j.conbuildmat.2007.06.010.
[36] D. Oluwabusayo ONI, J. Mwero, and C. Kabubo, Experimental Investigation of the Physical and Mechanical Properties of Cassava Starch Modified Concrete, Open Constr. Build. Technol. J., 13(1) (2020) 331–343, doi: 10.2174/1874836801913010331.
[37] A. A. Akindahunsi and H. C. Uzoegbo, Strength and Durability Properties of Concrete with Starch Admixture, Int. J. Concr. Struct. Mater., 9(3) (2015) 323–335, doi: 10.1007/s40069-015-0103-x.
[38] M. S. Shetty, Concrete Technology: Theory and Practice, 055 (2005).